These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 17388268)
1. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. Li W; Li S; Jiang Y J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268 [TBL] [Abstract][Full Text] [Related]
2. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. Hua W; Fang T; Li W; Yu JG; Li S J Phys Chem A; 2008 Oct; 112(43):10864-72. PubMed ID: 18837491 [TBL] [Abstract][Full Text] [Related]
3. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. Li S; Li W; Fang T J Am Chem Soc; 2005 May; 127(19):7215-26. PubMed ID: 15884963 [TBL] [Abstract][Full Text] [Related]
4. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules. Hua S; Hua W; Li S J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586 [TBL] [Abstract][Full Text] [Related]
5. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates. Li S; Li W; Ma J Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495 [TBL] [Abstract][Full Text] [Related]
6. A fragment energy assembler method for Hartree-Fock calculations of large molecules. Li W; Fang T; Li S J Chem Phys; 2006 Apr; 124(15):154102. PubMed ID: 16674213 [TBL] [Abstract][Full Text] [Related]
7. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. Lin H; Truhlar DG J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721 [TBL] [Abstract][Full Text] [Related]
8. Conformational simulations of aqueous solvated alpha-conotoxin GI and its single disulfide analogues using a polarizable force field model. Jiang N; Ma J J Phys Chem A; 2008 Oct; 112(40):9854-67. PubMed ID: 18788721 [TBL] [Abstract][Full Text] [Related]
9. Divide-and-conquer local correlation approach to the correlation energy of large molecules. Li W; Li S J Chem Phys; 2004 Oct; 121(14):6649-57. PubMed ID: 15473720 [TBL] [Abstract][Full Text] [Related]
10. Low-lying structures and stabilities of large water clusters: investigation based on the combination of the AMOEBA potential and generalized energy-based fragmentation approach. Yang Z; Hua S; Hua W; Li S J Phys Chem A; 2010 Sep; 114(34):9253-61. PubMed ID: 20669931 [TBL] [Abstract][Full Text] [Related]
11. Ab initio quality properties for macromolecules using the ADMA approach. Exner TE; Mezey PG J Comput Chem; 2003 Dec; 24(16):1980-6. PubMed ID: 14531052 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. Jiang N; Ma J; Jiang Y J Chem Phys; 2006 Mar; 124(11):114112. PubMed ID: 16555879 [TBL] [Abstract][Full Text] [Related]
13. The generalized energy-based fragmentation approach with an improved fragmentation scheme: benchmark results and illustrative applications. Hua S; Li W; Li S Chemphyschem; 2013 Jan; 14(1):108-15. PubMed ID: 23239545 [TBL] [Abstract][Full Text] [Related]
14. On the calculation of general response properties in subsystem density functional theory. Neugebauer J J Chem Phys; 2009 Aug; 131(8):084104. PubMed ID: 19725605 [TBL] [Abstract][Full Text] [Related]
15. Calculations of static dipole polarizabilities of alkali dimers: prospects for alignment of ultracold molecules. Deiglmayr J; Aymar M; Wester R; Weidemüller M; Dulieu O J Chem Phys; 2008 Aug; 129(6):064309. PubMed ID: 18715071 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation. Li Y; Yuan D; Wang Q; Li W; Li S Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875 [TBL] [Abstract][Full Text] [Related]
17. Calculation of protein-ligand interaction energies by a fragmentation approach combining high-level quantum chemistry with classical many-body effects. Söderhjelm P; Aquilante F; Ryde U J Phys Chem B; 2009 Aug; 113(32):11085-94. PubMed ID: 19618955 [TBL] [Abstract][Full Text] [Related]
18. Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. Nielsen CB; Christiansen O; Mikkelsen KV; Kongsted J J Chem Phys; 2007 Apr; 126(15):154112. PubMed ID: 17461619 [TBL] [Abstract][Full Text] [Related]
19. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Liao K; Wang S; Li W; Li S Phys Chem Chem Phys; 2021 Sep; 23(35):19394-19401. PubMed ID: 34490874 [TBL] [Abstract][Full Text] [Related]