These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Association of Cu2+ with uracil and its thio derivatives: a theoretical study. Lamsabhi AM; Alcamí M; Mó O; Yáñez M; Tortajada J Chemphyschem; 2004 Dec; 5(12):1871-8. PubMed ID: 15648135 [TBL] [Abstract][Full Text] [Related]
3. Interaction of Ca2+ with uracil and its thio derivatives in the gas phase. Trujillo C; Lamsabhi AM; Mó O; Yáñez M; Salpin JY Org Biomol Chem; 2008 Oct; 6(20):3695-702. PubMed ID: 18843399 [TBL] [Abstract][Full Text] [Related]
4. Gas-phase chemistry of ethynylamine, -phosphine and -arsine. Structure and stability of their Cu+ and Ni+ complexes. Galiano L; Alcamí M; Mó O; Yáñez M Chemphyschem; 2003 Jan; 4(1):72-8. PubMed ID: 12596468 [TBL] [Abstract][Full Text] [Related]
5. Effect of Ni(ii), Cu(ii) and Zn(ii) association on the keto-enol tautomerism of thymine in the gas phase. Rincón E; Yáñez M; Toro-Labbé A; Mó O Phys Chem Chem Phys; 2007 May; 9(20):2531-7. PubMed ID: 17508085 [TBL] [Abstract][Full Text] [Related]
6. Gas-phase deprotonation of uracil-Cu2+ and thiouracil-Cu2+ complexes. Lamsabhi AM; Alcamí M; Mó O; Yáñez M; Tortajada J J Phys Chem A; 2006 Feb; 110(5):1943-50. PubMed ID: 16451028 [TBL] [Abstract][Full Text] [Related]
7. Effect of Sr2+ association on the tautomerization processes of uracil and its dithio- and diseleno-derivatives. Eizaguirre A; Mó O; Yáñez M; Boyd RJ Org Biomol Chem; 2011 Jan; 9(2):423-31. PubMed ID: 21063629 [TBL] [Abstract][Full Text] [Related]
8. Specific hydration effects on oxo-thio triazepine derivatives. Lamsabhi AM J Phys Chem A; 2008 Feb; 112(8):1791-7. PubMed ID: 18251526 [TBL] [Abstract][Full Text] [Related]
9. The low energy tautomers and conformers of the dipeptides HisGly and GlyHis and of their sodium ion complexes in the gas phase. Kapota C; Ohanessian G Phys Chem Chem Phys; 2005 Nov; 7(21):3744-55. PubMed ID: 16358024 [TBL] [Abstract][Full Text] [Related]
10. Influence of the d orbital occupation on the nature and strength of copper cation-pi interactions: threshold collision-induced dissociation and theoretical studies. Ruan C; Yang Z; Rodgers MT Phys Chem Chem Phys; 2007 Nov; 9(44):5902-18. PubMed ID: 17989799 [TBL] [Abstract][Full Text] [Related]
11. Cation-pi Interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and His amino acids in the gas phase. Insights from first-principles calculations. Rimola A; Rodríguez-Santiago L; Sodupe M J Phys Chem B; 2006 Nov; 110(47):24189-99. PubMed ID: 17125391 [TBL] [Abstract][Full Text] [Related]
12. Unimolecular reactivity of strong metal-cation complexes in the gas phase: ethylenediamine-Cu(+). Alcamí M; Luna A; Mó O; Yáñez M; Tortajada J; Amekraz B Chemistry; 2004 Jun; 10(12):2927-34. PubMed ID: 15214074 [TBL] [Abstract][Full Text] [Related]
13. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state. Ducéré JM; Goursot A; Berthomieu D J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359 [TBL] [Abstract][Full Text] [Related]
14. Gas-phase theoretical prediction of the metal affinity of copper(I) ion for DNA and RNA bases. Russo N; Toscano M; Grand A J Mass Spectrom; 2003 Mar; 38(3):265-70. PubMed ID: 12644987 [TBL] [Abstract][Full Text] [Related]
15. Noncovalent interactions of Cu+ with N-donor ligands (pyridine, 4,4-dipyridyl, 2,2-dipyridyl, and 1,10-phenanthroline): collision-induced dissociation and theoretical studies. Rannulu NS; Rodgers MT J Phys Chem A; 2007 May; 111(18):3465-79. PubMed ID: 17439193 [TBL] [Abstract][Full Text] [Related]
16. Computational studies of Cu(II)/Met and Cu(I)/Met binding motifs relevant for the chemistry of Alzheimer's disease. Gómez-Balderas R; Raffa DF; Rickard GA; Brunelle P; Rauk A J Phys Chem A; 2005 Jun; 109(24):5498-508. PubMed ID: 16839078 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. Matsuda SP; Wilson WK; Xiong Q Org Biomol Chem; 2006 Feb; 4(3):530-43. PubMed ID: 16446812 [TBL] [Abstract][Full Text] [Related]
18. The phenoxy/phenol/copper cation: a minimalistic model of bonding relations in active centers of mononuclear copper enzymes. Milko P; Roithová J; Schröder D; Lemaire J; Schwarz H; Holthausen MC Chemistry; 2008; 14(14):4318-27. PubMed ID: 18381738 [TBL] [Abstract][Full Text] [Related]
19. A theoretical and computational study of the anion, neutral, and cation Cu(H(2)O) complexes. Taylor MS; Muntean F; Lineberger WC; McCoy AB J Chem Phys; 2004 Sep; 121(12):5688-99. PubMed ID: 15366992 [TBL] [Abstract][Full Text] [Related]
20. A density functional theory study on pelargonidin. Estévez L; Mosquera RA J Phys Chem A; 2007 Nov; 111(43):11100-9. PubMed ID: 17929785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]