These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 17388303)
1. N-nitrosation of amines by NO2 and NO: a theoretical study. Zhao YL; Garrison SL; Gonzalez C; Thweatt WD; Marquez M J Phys Chem A; 2007 Mar; 111(11):2200-5. PubMed ID: 17388303 [TBL] [Abstract][Full Text] [Related]
2. Theoretical investigation of nitration and nitrosation of dimethylamine by N2O4. Lv CL; Liu YD; Zhong R J Phys Chem A; 2008 Jul; 112(30):7098-105. PubMed ID: 18613660 [TBL] [Abstract][Full Text] [Related]
3. The mechanistic origin of regiochemical changes in the nitrosative N-dealkylation of N,N-dialkyl aromatic amines. Teuten EL; Loeppky RN Org Biomol Chem; 2005 Mar; 3(6):1097-108. PubMed ID: 15750654 [TBL] [Abstract][Full Text] [Related]
4. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde. Cerkovnik J; Plesnicar B; Koller J; Tuttle T J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299 [TBL] [Abstract][Full Text] [Related]
5. Theoretical investigation of N-nitrosodimethylamine formation from nitrosation of trimethylamine. Sun Z; Liu YD; Zhong RG J Phys Chem A; 2010 Jan; 114(1):455-65. PubMed ID: 20014814 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release. Moran EE; Timerghazin QK; Kwong E; English AM J Phys Chem B; 2011 Mar; 115(12):3112-26. PubMed ID: 21384833 [TBL] [Abstract][Full Text] [Related]
7. On the mechanism of the ascorbic acid-induced release of nitric oxide from N-nitrosated tryptophan derivatives: scavenging of NO by ascorbyl radicals. Kytzia A; Korth HG; Sustmann R; de Groot H; Kirsch M Chemistry; 2006 Nov; 12(34):8786-97. PubMed ID: 16952125 [TBL] [Abstract][Full Text] [Related]
8. Photoion photoelectron coincidence spectroscopy of primary amines RCH2NH2 (R = H, CH3, C2H5, C3H7, i-C3H7): alkylamine and alkyl radical heats of formation by isodesmic reaction networks. Bodi A; Kercher JP; Bond C; Meteesatien P; Sztáray B; Baer T J Phys Chem A; 2006 Dec; 110(50):13425-33. PubMed ID: 17165868 [TBL] [Abstract][Full Text] [Related]
10. Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate. El-Nahas AM; Navarro MV; Simmie JM; Bozzelli JW; Curran HJ; Dooley S; Metcalfe W J Phys Chem A; 2007 May; 111(19):3727-39. PubMed ID: 17286391 [TBL] [Abstract][Full Text] [Related]
11. Reaction mechanism between carbonyl oxide and hydroxyl radical: a theoretical study. Mansergas A; Anglada JM J Phys Chem A; 2006 Mar; 110(11):4001-11. PubMed ID: 16539423 [TBL] [Abstract][Full Text] [Related]
12. Amine nitration and nitrosation by gaseous nitrogen dioxide. Challis BC; Shuker DE; Fine DH; Goff EU; Hoffman GA IARC Sci Publ; 1982; (41):11-20. PubMed ID: 7141520 [TBL] [Abstract][Full Text] [Related]
13. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912 [TBL] [Abstract][Full Text] [Related]
14. Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape. Gerbaux P; Dechamps N; Flammang R; Nam PC; Nguyen MT; Djazi F; Berruyer F; Bouchoux G J Phys Chem A; 2008 Jun; 112(24):5418-28. PubMed ID: 18491852 [TBL] [Abstract][Full Text] [Related]
16. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals. Zhu L; Bozzelli JW; Kardos LM J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739 [TBL] [Abstract][Full Text] [Related]
17. Hydrazine nitrosation of a metal-bound nitric oxide: structural evidence for the formation of an ammine complex. Prakash R; Götz AW; Heinemann FW; Görling A; Sellmann D Inorg Chem; 2006 Jun; 45(12):4661-7. PubMed ID: 16749829 [TBL] [Abstract][Full Text] [Related]
18. EPR studies of amine radical cations, part 1: thermal and photoinduced rearrangements of n-alkylamine radical cations to their distonic forms in low-temperature freon matrices. Janovský I; Knolle W; Naumov S; Williams F Chemistry; 2004 Oct; 10(21):5524-34. PubMed ID: 15457522 [TBL] [Abstract][Full Text] [Related]
19. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation. Kalita A; Kumar P; Deka RC; Mondal B Inorg Chem; 2011 Dec; 50(23):11868-76. PubMed ID: 22040303 [TBL] [Abstract][Full Text] [Related]
20. Theoretical investigation of N-nitrosodimethylamine formation from dimethylamine nitrosation catalyzed by carbonyl compounds. Lv CL; Liu YD; Zhong RG J Phys Chem A; 2009 Jan; 113(4):713-8. PubMed ID: 19119806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]