BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 17388303)

  • 1. N-nitrosation of amines by NO2 and NO: a theoretical study.
    Zhao YL; Garrison SL; Gonzalez C; Thweatt WD; Marquez M
    J Phys Chem A; 2007 Mar; 111(11):2200-5. PubMed ID: 17388303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigation of nitration and nitrosation of dimethylamine by N2O4.
    Lv CL; Liu YD; Zhong R
    J Phys Chem A; 2008 Jul; 112(30):7098-105. PubMed ID: 18613660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanistic origin of regiochemical changes in the nitrosative N-dealkylation of N,N-dialkyl aromatic amines.
    Teuten EL; Loeppky RN
    Org Biomol Chem; 2005 Mar; 3(6):1097-108. PubMed ID: 15750654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde.
    Cerkovnik J; Plesnicar B; Koller J; Tuttle T
    J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of N-nitrosodimethylamine formation from nitrosation of trimethylamine.
    Sun Z; Liu YD; Zhong RG
    J Phys Chem A; 2010 Jan; 114(1):455-65. PubMed ID: 20014814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.
    Moran EE; Timerghazin QK; Kwong E; English AM
    J Phys Chem B; 2011 Mar; 115(12):3112-26. PubMed ID: 21384833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of the ascorbic acid-induced release of nitric oxide from N-nitrosated tryptophan derivatives: scavenging of NO by ascorbyl radicals.
    Kytzia A; Korth HG; Sustmann R; de Groot H; Kirsch M
    Chemistry; 2006 Nov; 12(34):8786-97. PubMed ID: 16952125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoion photoelectron coincidence spectroscopy of primary amines RCH2NH2 (R = H, CH3, C2H5, C3H7, i-C3H7): alkylamine and alkyl radical heats of formation by isodesmic reaction networks.
    Bodi A; Kercher JP; Bond C; Meteesatien P; Sztáray B; Baer T
    J Phys Chem A; 2006 Dec; 110(50):13425-33. PubMed ID: 17165868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular hydrogen bonding and hydrogen atom abstraction in gas-phase aliphatic amine radical cations.
    Hammerum S; Nielsen CB
    J Phys Chem A; 2005 Dec; 109(51):12046-53. PubMed ID: 16366660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: ethyl propanoate and methyl butanoate.
    El-Nahas AM; Navarro MV; Simmie JM; Bozzelli JW; Curran HJ; Dooley S; Metcalfe W
    J Phys Chem A; 2007 May; 111(19):3727-39. PubMed ID: 17286391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction mechanism between carbonyl oxide and hydroxyl radical: a theoretical study.
    Mansergas A; Anglada JM
    J Phys Chem A; 2006 Mar; 110(11):4001-11. PubMed ID: 16539423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amine nitration and nitrosation by gaseous nitrogen dioxide.
    Challis BC; Shuker DE; Fine DH; Goff EU; Hoffman GA
    IARC Sci Publ; 1982; (41):11-20. PubMed ID: 7141520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape.
    Gerbaux P; Dechamps N; Flammang R; Nam PC; Nguyen MT; Djazi F; Berruyer F; Bouchoux G
    J Phys Chem A; 2008 Jun; 112(24):5418-28. PubMed ID: 18491852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amidine nitrosation.
    Loeppky RN; Yu H
    J Org Chem; 2004 Apr; 69(9):3015-24. PubMed ID: 15104439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermochemical properties, DeltafH degrees (298), S degrees (298), and Cp degrees (T), for n-butyl and n-pentyl hydroperoxides and the alkyl and peroxy radicals, transition states, and kinetics for intramolecular hydrogen shift reactions of the peroxy radicals.
    Zhu L; Bozzelli JW; Kardos LM
    J Phys Chem A; 2007 Jul; 111(28):6361-77. PubMed ID: 17585739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrazine nitrosation of a metal-bound nitric oxide: structural evidence for the formation of an ammine complex.
    Prakash R; Götz AW; Heinemann FW; Görling A; Sellmann D
    Inorg Chem; 2006 Jun; 45(12):4661-7. PubMed ID: 16749829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR studies of amine radical cations, part 1: thermal and photoinduced rearrangements of n-alkylamine radical cations to their distonic forms in low-temperature freon matrices.
    Janovský I; Knolle W; Naumov S; Williams F
    Chemistry; 2004 Oct; 10(21):5524-34. PubMed ID: 15457522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation.
    Kalita A; Kumar P; Deka RC; Mondal B
    Inorg Chem; 2011 Dec; 50(23):11868-76. PubMed ID: 22040303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of N-nitrosodimethylamine formation from dimethylamine nitrosation catalyzed by carbonyl compounds.
    Lv CL; Liu YD; Zhong RG
    J Phys Chem A; 2009 Jan; 113(4):713-8. PubMed ID: 19119806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.