BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 17388498)

  • 1. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.
    Voronin SA; Zelzer M; Fotea C; Alexander MR; Bradley JW
    J Phys Chem B; 2007 Apr; 111(13):3419-29. PubMed ID: 17388498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal evolution of an electron-free afterglow in the pulsed plasma polymerisation of acrylic acid.
    Swindells I; Voronin SA; Bryant PM; Alexander MR; Bradley JW
    J Phys Chem B; 2008 Apr; 112(13):3938-47. PubMed ID: 18327932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of positive ion energy on plasma polymerization: a comparison between acrylic and propionic acids.
    Barton D; Shard AG; Short RD; Bradley JW
    J Phys Chem B; 2005 Mar; 109(8):3207-11. PubMed ID: 16851342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of positive ions in determining the deposition rate and film chemistry of continuous wave hexamethyl disiloxane plasmas.
    Michelmore A; Bryant PM; Steele DA; Vasilev K; Bradley JW; Short RD
    Langmuir; 2011 Oct; 27(19):11943-50. PubMed ID: 21863814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of negative molecular ions in acrylic acid plasma: some implications for polymerization mechanisms.
    Swindells I; Voronin SA; Fotea C; Alexander MR; Bradley JW
    J Phys Chem B; 2007 Aug; 111(30):8720-2. PubMed ID: 17616121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the synthesis of DEGVE pulsed plasmas for application to ultra thin biocompatible interfaces.
    Padron-Wells G; Jarvis BC; Jindal AK; Goeckner MJ
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):163-70. PubMed ID: 19041228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative rates for plasma homo- and copolymerizations of olefins in a homologous series of fluorinated ethylenes.
    Golub MA; Wydeven T
    Polymer Prepr; 1997; 38(1):1035-6. PubMed ID: 11541910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers.
    Michelmore A; Gross-Kosche P; Al-Bataineh SA; Whittle JD; Short RD
    Langmuir; 2013 Feb; 29(8):2595-601. PubMed ID: 23373619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-pressure DC air plasmas. investigation of neutral and ion chemistry.
    Castillo M; Méndez I; Islyaikin AM; Herrero VJ; Tanarro I
    J Phys Chem A; 2005 Jul; 109(28):6255-63. PubMed ID: 16833966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.
    El-Shall MS
    Acc Chem Res; 2008 Jul; 41(7):783-92. PubMed ID: 18557636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the plasma sheath on plasma polymer deposition in advance of a mask and down pores.
    Zelzer M; Scurr D; Abdullah B; Urquhart AJ; Gadegaard N; Bradley JW; Alexander MR
    J Phys Chem B; 2009 Jun; 113(25):8487-94. PubMed ID: 19485403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination of polycyclic aromatic hydrocarbon photoions with electrons in a flowing afterglow plasma.
    Novotný O; Sivaraman B; Rebrion-Rowe C; Travers D; Biennier L; Mitchell JB; Rowe BR
    J Chem Phys; 2005 Sep; 123(10):104303. PubMed ID: 16178593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast ion beam-plasma interaction system.
    Breun RA; Ferron JR
    Rev Sci Instrum; 1979 Jul; 50(7):862-6. PubMed ID: 18699621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films.
    Gupta M; Gleason KK
    Langmuir; 2006 Nov; 22(24):10047-52. PubMed ID: 17106998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma polymerization of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl in a collisional, capacitively coupled radio frequency discharge.
    Barnes MJ; Robson AJ; Naderi J; Short RD; Bradley JW
    Biointerphases; 2020 Nov; 15(6):061007. PubMed ID: 33218222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry.
    Waltman MJ; Dwivedi P; Hill HH; Blanchard WC; Ewing RG
    Talanta; 2008 Oct; 77(1):249-55. PubMed ID: 18804628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of instrumental parameters on the kinetic energy of ions and plasma temperature for a hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometer.
    Favre G; Brennetot R; Chartier F; Tortajada J
    Appl Spectrosc; 2009 Feb; 63(2):207-13. PubMed ID: 19215651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization.
    Chen R; Zhu S; Maclaughlin S
    Langmuir; 2008 Jun; 24(13):6889-96. PubMed ID: 18507417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa).
    Matthijs HC; Balke H; van Hes UM; Kroon BM; Mur LR; Binot RA
    Biotechnol Bioeng; 1996 Apr; 50(1):98-107. PubMed ID: 18626903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled nitroxide-mediated styrene surface graft polymerization with atmospheric plasma surface activation.
    Lewis GT; Cohen Y
    Langmuir; 2008 Nov; 24(22):13102-12. PubMed ID: 18937433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.