BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 17388512)

  • 1. Nucleation of self-associating fluids: free versus activated association.
    Talanquer V
    J Phys Chem B; 2007 Apr; 111(13):3438-46. PubMed ID: 17388512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior of self-associating fluids with weaker dispersion interactions between bonded particles.
    Talanquer V
    J Chem Phys; 2005 Apr; 122(15):154510. PubMed ID: 15945648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of dipolar associating fluids from the SAFT-VR+D equation of state.
    Zhao H; Ding Y; McCabe C
    J Chem Phys; 2007 Aug; 127(8):084514. PubMed ID: 17764276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation in cylindrical capillaries.
    Husowitz B; Talanquer V
    J Chem Phys; 2004 Oct; 121(16):8021-8. PubMed ID: 15485266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E
    J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of dipolar fluids from a modified statistical associating fluid theory for potentials of variable range.
    Zhao H; McCabe C
    J Chem Phys; 2006 Sep; 125(10):104504. PubMed ID: 16999538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model for reversible nanoparticle assembly in a polymer matrix.
    Rahedi AJ; Douglas JF; Starr FW
    J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained molecular dynamics modeling of strongly associating fluids: thermodynamics, liquid structure, and dynamics of symmetric binary mixture fluids.
    Li T; Nies E
    J Phys Chem B; 2007 Jul; 111(28):8131-44. PubMed ID: 17585801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice model of equilibrium polymerization. V. Scattering properties and the width of the critical regime for phase separation.
    Rah K; Freed KF; Dudowicz J; Douglas JF
    J Chem Phys; 2006 Apr; 124(14):144906. PubMed ID: 16626244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral equation study of a Stockmayer fluid adsorbed in polar disordered matrices.
    Spöler C; Klapp SH
    J Chem Phys; 2004 Apr; 120(14):6734-43. PubMed ID: 15267567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step vapor-crystal nucleation close below triple point.
    van Meel JA; Page AJ; Sear RP; Frenkel D
    J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density functional theory for inhomogeneous associating chain fluids.
    Bryk P; Sokołowski S; Pizio O
    J Chem Phys; 2006 Jul; 125(2):24909. PubMed ID: 16848613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions and criticality in small systems: vapor-liquid transition in nanoscale spherical cavities.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2006 May; 110(19):9403-12. PubMed ID: 16686483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo study of interfacial properties of associating fluids.
    Orea P
    J Chem Phys; 2005 Oct; 123(14):144704. PubMed ID: 16238413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vapor-liquid coexistence of patchy models: relevance to protein phase behavior.
    Liu H; Kumar SK; Sciortino F
    J Chem Phys; 2007 Aug; 127(8):084902. PubMed ID: 17764289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prewetting transitions of one site associating fluids.
    Khan S; Singh JK
    J Chem Phys; 2010 Apr; 132(14):144501. PubMed ID: 20405995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory.
    Mi J; Tang Y; Zhong C; Li YG
    J Phys Chem B; 2005 Nov; 109(43):20546-53. PubMed ID: 16853659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.