These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 17388807)
21. Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. Watanabe S; Piyanart S; Makino K FEBS J; 2008 Oct; 275(20):5139-49. PubMed ID: 18793327 [TBL] [Abstract][Full Text] [Related]
22. Solvent-stable Pseudomonas aeruginosa PseA protease gene: identification, molecular characterization, phylogenetic and bioinformatic analysis to study reasons for solvent stability. Gupta A; Ray S; Kapoor S; Khare SK J Mol Microbiol Biotechnol; 2008; 15(4):234-43. PubMed ID: 17715461 [TBL] [Abstract][Full Text] [Related]
23. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. Kotera M; Okuno Y; Hattori M; Goto S; Kanehisa M J Am Chem Soc; 2004 Dec; 126(50):16487-98. PubMed ID: 15600352 [TBL] [Abstract][Full Text] [Related]
24. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. Rahman M; Clarke PH J Gen Microbiol; 1980 Feb; 116(2):357-69. PubMed ID: 6768834 [TBL] [Abstract][Full Text] [Related]
25. [Identification of SHV-type extended spectrum beta-lactamase genes in Pseudomonas aeruginosa by PCR-restriction fragment length polymorphism and insertion site restriction-PCR]. Kalai Blagui S; Achour W; Abdeladhim A; Ben Hassen A Pathol Biol (Paris); 2009 Jul; 57(5):420-4. PubMed ID: 18838231 [TBL] [Abstract][Full Text] [Related]
26. On the origin and evolution of biosynthetic pathways: integrating microarray data with structure and organization of the Common Pathway genes. Fondi M; Brilli M; Fani R BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S12. PubMed ID: 17430556 [TBL] [Abstract][Full Text] [Related]
27. [Mechanisms of pandrug-resistance of Pseudomonas aeruginosa]. Shen JL; Zhu DM; Wang MG Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(26):1859-62. PubMed ID: 19040025 [TBL] [Abstract][Full Text] [Related]
29. PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. Ayers M; Sampaleanu LM; Tammam S; Koo J; Harvey H; Howell PL; Burrows LL J Mol Biol; 2009 Nov; 394(1):128-42. PubMed ID: 19857645 [TBL] [Abstract][Full Text] [Related]
30. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Buch A; Archana G; Naresh Kumar G Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187 [TBL] [Abstract][Full Text] [Related]
31. Annotating enzymes of unknown function: N-formimino-L-glutamate deiminase is a member of the amidohydrolase superfamily. Martí-Arbona R; Xu C; Steele S; Weeks A; Kuty GF; Seibert CM; Raushel FM Biochemistry; 2006 Feb; 45(7):1997-2005. PubMed ID: 16475788 [TBL] [Abstract][Full Text] [Related]
32. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. Li W; Lu CD J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289 [TBL] [Abstract][Full Text] [Related]
33. Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. MacLean RC J Evol Biol; 2010 Mar; 23(3):488-93. PubMed ID: 20070461 [TBL] [Abstract][Full Text] [Related]
34. The Pseudomonas aeruginosa nirE gene encodes the S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase required for heme d(1) biosynthesis. Storbeck S; Walther J; Müller J; Parmar V; Schiebel HM; Kemken D; Dülcks T; Warren MJ; Layer G FEBS J; 2009 Oct; 276(20):5973-82. PubMed ID: 19754882 [TBL] [Abstract][Full Text] [Related]
35. Overexpression and initial characterization of the chromosomal aminoglycoside 3'-O-phosphotransferase APH(3')-IIb from Pseudomonas aeruginosa. Hainrichson M; Yaniv O; Cherniavsky M; Nudelman I; Shallom-Shezifi D; Yaron S; Baasov T Antimicrob Agents Chemother; 2007 Feb; 51(2):774-6. PubMed ID: 17088479 [TBL] [Abstract][Full Text] [Related]
36. Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. Westman EL; McNally DJ; Charchoglyan A; Brewer D; Field RA; Lam JS J Biol Chem; 2009 May; 284(18):11854-62. PubMed ID: 19282284 [TBL] [Abstract][Full Text] [Related]
37. PseudoCyc, a pathway-genome database for Pseudomonas aeruginosa. Romero P; Karp P J Mol Microbiol Biotechnol; 2003; 5(4):230-9. PubMed ID: 12867747 [TBL] [Abstract][Full Text] [Related]
38. Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Llamas MA; Mooij MJ; Sparrius M; Vandenbroucke-Grauls CM; Ratledge C; Bitter W Mol Microbiol; 2008 Jan; 67(2):458-72. PubMed ID: 18086184 [TBL] [Abstract][Full Text] [Related]
39. Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity. Wiehlmann L; Munder A; Adams T; Juhas M; Kolmar H; Salunkhe P; Tümmler B Int J Med Microbiol; 2007 Nov; 297(7-8):615-23. PubMed ID: 17481950 [TBL] [Abstract][Full Text] [Related]
40. Transcriptional activity of Pseudomonas aeruginosa fhp promoter is dependent on two regulators in addition to FhpR. Koskenkorva T; Aro-Kärkkäinen N; Bachmann D; Arai H; Frey AD; Kallio PT Arch Microbiol; 2008 Apr; 189(4):385-96. PubMed ID: 18043907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]