These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 17388807)
41. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Yu S; Jensen V; Seeliger J; Feldmann I; Weber S; Schleicher E; Häussler S; Blankenfeldt W Biochemistry; 2009 Nov; 48(43):10298-307. PubMed ID: 19788310 [TBL] [Abstract][Full Text] [Related]
42. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. Green ML; Karp PD BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570 [TBL] [Abstract][Full Text] [Related]
43. lfnA from Pseudomonas aeruginosa O12 and wbuX from Escherichia coli O145 encode membrane-associated proteins and are required for expression of 2,6-dideoxy-2-acetamidino-L-galactose in lipopolysaccharide O antigen. King JD; Mulrooney EF; Vinogradov E; Kneidinger B; Mead K; Lam JS J Bacteriol; 2008 Mar; 190(5):1671-9. PubMed ID: 18156256 [TBL] [Abstract][Full Text] [Related]
44. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Kjeldsen KR; Nielsen J Biotechnol Bioeng; 2009 Feb; 102(2):583-97. PubMed ID: 18985611 [TBL] [Abstract][Full Text] [Related]
45. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. Hoboth C; Hoffmann R; Eichner A; Henke C; Schmoldt S; Imhof A; Heesemann J; Hogardt M J Infect Dis; 2009 Jul; 200(1):118-30. PubMed ID: 19459782 [TBL] [Abstract][Full Text] [Related]
46. Identification of two dihydrodipicolinate synthase isoforms from Pseudomonas aeruginosa that differ in allosteric regulation. Impey RE; Panjikar S; Hall CJ; Bock LJ; Sutton JM; Perugini MA; Soares da Costa TP FEBS J; 2020 Jan; 287(2):386-400. PubMed ID: 31330085 [TBL] [Abstract][Full Text] [Related]
47. Functional chararacterization of the enzymes TabB and TabD involved in tabtoxin biosynthesis by Pseudomonas syringae. Manning ME; Danson EJ; Calderone CT Biochem Biophys Res Commun; 2018 Jan; 496(1):212-217. PubMed ID: 29307827 [TBL] [Abstract][Full Text] [Related]
48. [Relationship between key enzyme activities of inosine-producing pathway and inosine accumulation]. Song Y; Cai X; Chu J; Zhuang Y; Zhang S Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):361-5. PubMed ID: 16279203 [TBL] [Abstract][Full Text] [Related]
49. Factors influencing growth on L-lysine by Pseudomonas. Regulation of terminal enzymes in the delta-aminovalerate pathway and growth stimulation by alpha ketoglutarate. Chang YF; Adams E J Biol Chem; 1977 Nov; 252(22):7987-91. PubMed ID: 914858 [No Abstract] [Full Text] [Related]
50. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. Veiga-da-Cunha M; Hadi F; Balligand T; Stroobant V; Van Schaftingen E J Biol Chem; 2012 Mar; 287(10):7246-55. PubMed ID: 22241472 [TBL] [Abstract][Full Text] [Related]
52. [Lysine biosynthesis in Pseudomonas aeruginosa PAO 1. II. First studies of DAP decarboxylase of lysine auxotrophic mutant of P. aeruginosa PAO 1]. Schröder D; Wölfel L; Schroeter A; Mach F Z Allg Mikrobiol; 1978; 18(6):453-6. PubMed ID: 102088 [No Abstract] [Full Text] [Related]
53. Catabolism of taurine in Pseudomonas aeruginosa. Shimamoto G; Berk RS Biochim Biophys Acta; 1979 Aug; 569(2):287-92. PubMed ID: 113035 [TBL] [Abstract][Full Text] [Related]
54. Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway. Schmitz RA; Dietl A; Müller M; Berben T; Op den Camp HJM; Barends TRM Acta Crystallogr F Struct Biol Commun; 2020 May; 76(Pt 5):199-208. PubMed ID: 32356521 [TBL] [Abstract][Full Text] [Related]
55. Reconstruction of ABC Transporter Pathways of Archaea and Comparison of Their Genomes. Xie T; Sheng QH; Ding DF Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2000; 32(2):169-174. PubMed ID: 12098796 [TBL] [Abstract][Full Text] [Related]
56. Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa. Patel N; Stenmark-Cox SL; Jensen RA J Biol Chem; 1978 May; 253(9):2972-8. PubMed ID: 417080 [No Abstract] [Full Text] [Related]
57. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs. Moriya Y; Yamada T; Okuda S; Nakagawa Z; Kotera M; Tokimatsu T; Kanehisa M; Goto S J Chem Inf Model; 2016 Mar; 56(3):510-6. PubMed ID: 26822930 [TBL] [Abstract][Full Text] [Related]
59. Highlighting Human Enzymes Active in Different Metabolic Pathways and Diseases: The Case Study of EC 1.2.3.1 and EC 2.3.1.9. Babbi G; Baldazzi D; Savojardo C; Martelli PL; Casadio R Biomedicines; 2020 Jul; 8(8):. PubMed ID: 32751059 [TBL] [Abstract][Full Text] [Related]