BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 17389045)

  • 21. Spatial clustering of endemic Burkitt's lymphoma in high-risk regions of Kenya.
    Rainey JJ; Omenah D; Sumba PO; Moormann AM; Rochford R; Wilson ML
    Int J Cancer; 2007 Jan; 120(1):121-7. PubMed ID: 17019706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial analysis of tuberculosis in an urban west African setting: is there evidence of clustering?
    Touray K; Adetifa IM; Jallow A; Rigby J; Jeffries D; Cheung YB; Donkor S; Adegbola RA; Hill PC
    Trop Med Int Health; 2010 Jun; 15(6):664-72. PubMed ID: 20406427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial clustering and space-time clusters of leukemia among children in Germany, 1987-2007.
    Schmiedel S; Blettner M; Kaatsch P; Schüz J
    Eur J Epidemiol; 2010 Sep; 25(9):627-33. PubMed ID: 20623321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.
    Tango T; Takahashi K
    Stat Med; 2012 Dec; 31(30):4207-18. PubMed ID: 22807146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Case control study on childhood leukemia in Lower Saxony, Germany. Basic considerations, methodology, and summary of results.
    Kaatsch P; Kaletsch U; Krummenauer F; Meinert R; Miesner A; Haaf G; Michaelis J
    Klin Padiatr; 1996; 208(4):179-85. PubMed ID: 8776704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial cluster analysis of early stage breast cancer: a method for public health practice using cancer registry data.
    Meliker JR; Jacquez GM; Goovaerts P; Copeland G; Yassine M
    Cancer Causes Control; 2009 Sep; 20(7):1061-9. PubMed ID: 19219634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geographical Distribution and Cluster Detection of Childhood Leukemia in the Metropolitan Area of Guadalajara, Mexico.
    Tlacuilo-Parra A; Garibaldi-Covarrubias R; Romo-Rubio H; Soto-Sumuano L; Ruiz-Chávez CF; Suárez-Arredondo M; Sánchez-Zubieta F; Gallegos-Castorena S
    Rev Invest Clin; 2017; 69(3):159-165. PubMed ID: 28613286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical power of disease cluster and clustering tests for rare diseases: a simulation study of point sources.
    Schmiedel S; Blettner M; Schüz J
    Spat Spatiotemporal Epidemiol; 2012 Sep; 3(3):235-42. PubMed ID: 22749209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods for detecting disease clustering, with consideration of childhood leukaemia.
    Muirhead CR
    Stat Methods Med Res; 2006 Aug; 15(4):363-83. PubMed ID: 16886737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial clustering of childhood cancer in Great Britain during the period 1969-1993.
    McNally RJ; Alexander FE; Vincent TJ; Murphy MF
    Int J Cancer; 2009 Feb; 124(4):932-6. PubMed ID: 19035447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clusters and clustering of childhood cancer: a review.
    Alexander FE
    Eur J Epidemiol; 1999 Oct; 15(9):847-52. PubMed ID: 10608365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Space-time clustering of childhood cancers: a systematic review and pooled analysis.
    Kreis C; Doessegger E; Lupatsch JE; Spycher BD
    Eur J Epidemiol; 2019 Jan; 34(1):9-21. PubMed ID: 30446850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An examination of five spatial disease clustering methodologies for the identification of childhood cancer clusters in Alberta, Canada.
    Torabi M; Rosychuk RJ
    Spat Spatiotemporal Epidemiol; 2011 Dec; 2(4):321-30. PubMed ID: 22748230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Second-order analysis of spatial clustering for inhomogeneous populations.
    Diggle PJ; Chetwynd AG
    Biometrics; 1991 Sep; 47(3):1155-63. PubMed ID: 1742435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An extended power of cluster detection tests.
    Takahashi K; Tango T
    Stat Med; 2006 Mar; 25(5):841-52. PubMed ID: 16453379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of population mixing based on the geographical distribution of childhood leukemia in Ohio.
    Clark BR; Ferketich AK; Fisher JL; Ruymann FB; Harris RE; Wilkins JR
    Pediatr Blood Cancer; 2007 Nov; 49(6):797-802. PubMed ID: 17366525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial analysis of childhood leukemia in a case/control study.
    Selvin S; Ragland KE; Chien EY; Buffler PA
    Int J Hyg Environ Health; 2004 Dec; 207(6):555-62. PubMed ID: 15729836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geovisualization and Spatial Analysis of Infant Mortality and Preterm Birth in Ohio, 2008-2015: Opportunities to Enhance Spatial Thinking.
    Root ED; Bailey ED; Gorham T; Browning C; Song C; Salsberry P
    Public Health Rep; 2020; 135(4):472-482. PubMed ID: 32552459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-temporal clustering of American Cutaneous Leishmaniasis in a rural municipality of Venezuela.
    Rodríguez EM; Díaz F; Pérez MV
    Epidemics; 2013 Mar; 5(1):11-9. PubMed ID: 23438427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A flexibly shaped spatial scan statistic for detecting clusters.
    Tango T; Takahashi K
    Int J Health Geogr; 2005 May; 4():11. PubMed ID: 15904524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.