BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 17389267)

  • 1. Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels.
    Xue T; Siu CW; Lieu DK; Lau CP; Tse HF; Li RA
    Circulation; 2007 Apr; 115(14):1839-50. PubMed ID: 17389267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers.
    Lieu DK; Chan YC; Lau CP; Tse HF; Siu CW; Li RA
    Heart Rhythm; 2008 Sep; 5(9):1310-7. PubMed ID: 18693074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity.
    Chan YC; Siu CW; Lau YM; Lau CP; Li RA; Tse HF
    J Cardiovasc Electrophysiol; 2009 Sep; 20(9):1048-54. PubMed ID: 19460073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model.
    Tse HF; Xue T; Lau CP; Siu CW; Wang K; Zhang QY; Tomaselli GF; Akar FG; Li RA
    Circulation; 2006 Sep; 114(10):1000-11. PubMed ID: 16923751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers.
    Azene EM; Xue T; Marbán E; Tomaselli GF; Li RA
    Cardiovasc Res; 2005 Aug; 67(2):263-73. PubMed ID: 16005302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automaticity and conduction properties of bio-artificial pacemakers assessed in an in vitro monolayer model of neonatal rat ventricular myocytes.
    Chan YC; Tse HF; Siu CW; Wang K; Li RA
    Europace; 2010 Aug; 12(8):1178-87. PubMed ID: 20472688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide.
    Chen S; Wang J; Siegelbaum SA
    J Gen Physiol; 2001 May; 117(5):491-504. PubMed ID: 11331358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S4 movement in a mammalian HCN channel.
    Vemana S; Pandey S; Larsson HP
    J Gen Physiol; 2004 Jan; 123(1):21-32. PubMed ID: 14676284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical secondary structure of the external S3-S4 linker of pacemaker (HCN) channels revealed by site-dependent perturbations of activation phenotype.
    Lesso H; Li RA
    J Biol Chem; 2003 Jun; 278(25):22290-7. PubMed ID: 12668666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recreating an artificial biological pacemaker: insights from a theoretical model.
    Viswanathan PC; Coles JA; Sharma V; Sigg DC
    Heart Rhythm; 2006 Jul; 3(7):824-31. PubMed ID: 16818216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization.
    Xue T; Marbán E; Li RA
    Circ Res; 2002 Jun; 90(12):1267-73. PubMed ID: 12089064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias.
    Michels G; Er F; Khan I; Südkamp M; Herzig S; Hoppe UC
    Circulation; 2005 Feb; 111(4):399-404. PubMed ID: 15687126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) channels by systematic length alterations.
    Tsang SY; Lesso H; Li RA
    J Biol Chem; 2004 Oct; 279(42):43752-9. PubMed ID: 15299004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes.
    Er F; Larbig R; Ludwig A; Biel M; Hofmann F; Beuckelmann DJ; Hoppe UC
    Circulation; 2003 Jan; 107(3):485-9. PubMed ID: 12551875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating.
    Henrikson CA; Xue T; Dong P; Sang D; Marban E; Li RA
    J Biol Chem; 2003 Apr; 278(16):13647-54. PubMed ID: 12582169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering.
    Siu CW; Lieu DK; Li RA
    J Membr Biol; 2006; 214(3):115-22. PubMed ID: 17558529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels.
    Elinder F; Männikkö R; Pandey S; Larsson HP
    J Physiol; 2006 Sep; 575(Pt 2):417-31. PubMed ID: 16777944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
    Michels G; Brandt MC; Zagidullin N; Khan IF; Larbig R; van Aaken S; Wippermann J; Hoppe UC
    Cardiovasc Res; 2008 Jun; 78(3):466-75. PubMed ID: 18252758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions.
    Wang J; Chen S; Siegelbaum SA
    J Gen Physiol; 2001 Sep; 118(3):237-50. PubMed ID: 11524455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes.
    Sartiani L; Bochet P; Cerbai E; Mugelli A; Fischmeister R
    J Physiol; 2002 Nov; 545(1):81-92. PubMed ID: 12433951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.