These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 17389395)
1. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Wolf-Yadlin A; Hautaniemi S; Lauffenburger DA; White FM Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5860-5. PubMed ID: 17389395 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Zhang Y; Wolf-Yadlin A; Ross PL; Pappin DJ; Rush J; Lauffenburger DA; White FM Mol Cell Proteomics; 2005 Sep; 4(9):1240-50. PubMed ID: 15951569 [TBL] [Abstract][Full Text] [Related]
3. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells. Heibeck TH; Ding SJ; Opresko LK; Zhao R; Schepmoes AA; Yang F; Tolmachev AV; Monroe ME; Camp DG; Smith RD; Wiley HS; Qian WJ J Proteome Res; 2009 Aug; 8(8):3852-61. PubMed ID: 19534553 [TBL] [Abstract][Full Text] [Related]
4. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors. Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940 [TBL] [Abstract][Full Text] [Related]
5. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data. Waters KM; Liu T; Quesenberry RD; Willse AR; Bandyopadhyay S; Kathmann LE; Weber TJ; Smith RD; Wiley HS; Thrall BD PLoS One; 2012; 7(3):e34515. PubMed ID: 22479638 [TBL] [Abstract][Full Text] [Related]
6. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Nguyen V; Cao L; Lin JT; Hung N; Ritz A; Yu K; Jianu R; Ulin SP; Raphael BJ; Laidlaw DH; Brossay L; Salomon AR Mol Cell Proteomics; 2009 Nov; 8(11):2418-31. PubMed ID: 19605366 [TBL] [Abstract][Full Text] [Related]
7. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis. Dong M; Bian Y; Wang Y; Dong J; Yao Y; Deng Z; Qin H; Zou H; Ye M Anal Chem; 2017 Sep; 89(17):9307-9314. PubMed ID: 28796482 [TBL] [Abstract][Full Text] [Related]
8. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Boersema PJ; Foong LY; Ding VM; Lemeer S; van Breukelen B; Philp R; Boekhorst J; Snel B; den Hertog J; Choo AB; Heck AJ Mol Cell Proteomics; 2010 Jan; 9(1):84-99. PubMed ID: 19770167 [TBL] [Abstract][Full Text] [Related]
9. Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome. Liu T; Qian WJ; Chen WN; Jacobs JM; Moore RJ; Anderson DJ; Gritsenko MA; Monroe ME; Thrall BD; Camp DG; Smith RD Proteomics; 2005 Apr; 5(5):1263-73. PubMed ID: 15742320 [TBL] [Abstract][Full Text] [Related]
10. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331 [TBL] [Abstract][Full Text] [Related]
11. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data. Imamura H; Yachie N; Saito R; Ishihama Y; Tomita M BMC Bioinformatics; 2010 May; 11():232. PubMed ID: 20459641 [TBL] [Abstract][Full Text] [Related]
12. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Curran TG; Zhang Y; Ma DJ; Sarkaria JN; White FM Nat Commun; 2015 Jan; 6():5924. PubMed ID: 25581283 [TBL] [Abstract][Full Text] [Related]
13. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Naegle KM; White FM; Lauffenburger DA; Yaffe MB Mol Biosyst; 2012 Oct; 8(10):2771-82. PubMed ID: 22851037 [TBL] [Abstract][Full Text] [Related]
14. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks. Zhang Y; Wolf-Yadlin A; White FM Methods Mol Biol; 2007; 359():203-12. PubMed ID: 17484120 [TBL] [Abstract][Full Text] [Related]
15. Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals. Zhang S; Wu Q; Shan Y; Zhou Y; Zhang L; Zhang Y J Proteomics; 2015 Jan; 114():152-60. PubMed ID: 25434490 [TBL] [Abstract][Full Text] [Related]
16. Large-scale proteomics analysis of the human kinome. Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195 [TBL] [Abstract][Full Text] [Related]
17. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry. Olsson N; James P; Borrebaeck CA; Wingren C Mol Cell Proteomics; 2012 Aug; 11(8):342-54. PubMed ID: 22543061 [TBL] [Abstract][Full Text] [Related]
18. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Kreuzer J; Edwards A; Haas W Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085 [TBL] [Abstract][Full Text] [Related]
19. Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells. Worthington J; Spain G; Timms JF Mol Cell Proteomics; 2017 Apr; 16(4):608-621. PubMed ID: 28174229 [TBL] [Abstract][Full Text] [Related]
20. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Blagoev B; Ong SE; Kratchmarova I; Mann M Nat Biotechnol; 2004 Sep; 22(9):1139-45. PubMed ID: 15314609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]