These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17389642)

  • 1. RNase T1 mimicking artificial ribonuclease.
    Mironova NL; Pyshnyi DV; Shtadler DV; Fedorova AA; Vlassov VV; Zenkova MA
    Nucleic Acids Res; 2007; 35(7):2356-67. PubMed ID: 17389642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G-specific RNA-cleaving conjugates of short peptides and oligodeoxyribonucleotides.
    Mironova NL; Pyshnyi DV; Stadler DV; Prokudin IV; Boutorine YI; Ivanova EM; Zenkova MA; Gross HJ; Vlassov VV
    J Biomol Struct Dyn; 2006 Jun; 23(6):591-602. PubMed ID: 16615805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide.
    Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U
    Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalently attached oligodeoxyribonucleotides induce RNase activity of a short peptide and modulate its base specificity.
    Mironova NL; Pyshnyi DV; Ivanova EM; Zenkova MA; Gross HJ; Vlassov VV
    Nucleic Acids Res; 2004; 32(6):1928-36. PubMed ID: 15047859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA structure determination using nuclease digestion.
    Nilsen TW
    Cold Spring Harb Protoc; 2013 Apr; 2013(4):379-82. PubMed ID: 23547152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNase-stable RNA: conformational parameters of the nucleic acid backbone for binding to RNase T1.
    Greiner-Stöffele T; Förster HH; Hofmann HJ; Hahn U
    Biol Chem; 2001 Jul; 382(7):1007-17. PubMed ID: 11530931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase.
    Gao HQ; Sarafianos SG; Arnold E; Hughes SH
    J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity.
    Chen DT; Lin A
    Protein Eng; 2002 Dec; 15(12):997-1003. PubMed ID: 12601139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity and kinetic framework of a DNAzyme with an expanded chemical repertoire: a putative RNaseA mimic that catalyzes RNA hydrolysis independent of a divalent metal cation.
    Ting R; Thomas JM; Lermer L; Perrin DM
    Nucleic Acids Res; 2004; 32(22):6660-72. PubMed ID: 15625232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro.
    Mackie GA; Genereaux JL
    J Mol Biol; 1993 Dec; 234(4):998-1012. PubMed ID: 7505337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine activity of RNase T1RV is further improved by substitution of Trp59 by tyrosine.
    Czaja R; Perbandt M; Betzel C; Hahn U
    Biochem Biophys Res Commun; 2005 Oct; 336(3):882-9. PubMed ID: 16157302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops.
    McDowall KJ; Kaberdin VR; Wu SW; Cohen SN; Lin-Chao S
    Nature; 1995 Mar; 374(6519):287-90. PubMed ID: 7533896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonuclease T1 cleaves RNA after guanosines within single-stranded gaps of any length.
    Greiner-Stöffele T; Foerster HH; Hahn U
    Nucleosides Nucleotides Nucleic Acids; 2000 Jul; 19(7):1101-9. PubMed ID: 10999250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity.
    Tamkovich N; Koroleva L; Kovpak M; Goncharova E; Silnikov V; Vlassov V; Zenkova M
    Bioorg Med Chem; 2016 Mar; 24(6):1346-55. PubMed ID: 26899594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial ribonucleases.
    Morrow JR
    Adv Inorg Biochem; 1994; 9():41-74. PubMed ID: 7511321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of ribonuclease T1 specificity by random mutagenesis of the substrate binding segment.
    Hubner B; Haensler M; Hahn U
    Biochemistry; 1999 Jan; 38(4):1371-6. PubMed ID: 9931000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.