BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17389645)

  • 1. Real-time PCR mapping of DNaseI-hypersensitive sites using a novel ligation-mediated amplification technique.
    Follows GA; Janes ME; Vallier L; Green AR; Gottgens B
    Nucleic Acids Res; 2007; 35(8):e56. PubMed ID: 17389645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying gene regulatory elements by genomic microarray mapping of DNaseI hypersensitive sites.
    Follows GA; Dhami P; Göttgens B; Bruce AW; Campbell PJ; Dillon SC; Smith AM; Koch C; Donaldson IJ; Scott MA; Dunham I; Janes ME; Vetrie D; Green AR
    Genome Res; 2006 Oct; 16(10):1310-9. PubMed ID: 16963707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).
    Shibata Y; Crawford GE
    Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid high-throughput analysis of DNaseI hypersensitive sites using a modified Multiplex Ligation-dependent Probe Amplification approach.
    Ohnesorg T; Eggers S; Leonhard WN; Sinclair AH; White SJ
    BMC Genomics; 2009 Sep; 10():412. PubMed ID: 19728890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).
    Crawford GE; Holt IE; Whittle J; Webb BD; Tai D; Davis S; Margulies EH; Chen Y; Bernat JA; Ginsburg D; Zhou D; Luo S; Vasicek TJ; Daly MJ; Wolfsberg TG; Collins FS
    Genome Res; 2006 Jan; 16(1):123-31. PubMed ID: 16344561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNaseI hypersensitive sites at the 3' end of the human apolipoprotein B gene.
    Levy-Wilson B
    Biochem Biophys Res Commun; 1990 Aug; 171(1):162-8. PubMed ID: 2168168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing.
    Cooper J; Ding Y; Song J; Zhao K
    Nat Protoc; 2017 Nov; 12(11):2342-2354. PubMed ID: 29022941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome.
    O'Malley RC; Alonso JM; Kim CJ; Leisse TJ; Ecker JR
    Nat Protoc; 2007; 2(11):2910-7. PubMed ID: 18007627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato.
    Li R; Cui X
    Methods Mol Biol; 2018; 1830():367-379. PubMed ID: 30043382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries.
    Sabo PJ; Humbert R; Hawrylycz M; Wallace JC; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4537-42. PubMed ID: 15070753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection.
    Ranade SS; Chung CB; Zon G; Boyd VL
    Anal Biochem; 2009 Jul; 390(2):126-35. PubMed ID: 19379703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting DNaseI-hypersensitivity sites with MLPA.
    Ohnesorg T; Eggers S; White SJ
    Methods Mol Biol; 2012; 786():201-10. PubMed ID: 21938628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites.
    Crawford GE; Holt IE; Mullikin JC; Tai D; Blakesley R; Bouffard G; Young A; Masiello C; Green ED; Wolfsberg TG; Collins FS;
    Proc Natl Acad Sci U S A; 2004 Jan; 101(4):992-7. PubMed ID: 14732688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput localization of functional elements by quantitative chromatin profiling.
    Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA
    Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
    Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS
    Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNaseI hypersensitivity analysis of chromatin structure.
    Lu Q; Richardson B
    Methods Mol Biol; 2004; 287():77-86. PubMed ID: 15273405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range chromatin analysis of the human MYC locus by pulsed-field gel electrophoresis.
    Mautner J; Bornkamm GW; Polack A
    Genes Chromosomes Cancer; 1996 Aug; 16(4):247-53. PubMed ID: 8875238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mapping of DNAse I hypersensitive sites in the 5'-terminal region of the chicken alpha-globin gene domain].
    Razin SV
    Genetika; 1994 Jan; 30(1):33-6. PubMed ID: 8188043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome.
    Minami M; Poussin K; Bréchot C; Paterlini P
    Genomics; 1995 Sep; 29(2):403-8. PubMed ID: 8666388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.