BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17389792)

  • 1. Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species.
    Zeng S; Li J; Zhang X; Zuo M
    Brain Behav Evol; 2007; 70(1):1-20. PubMed ID: 17389792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in neurogenesis differentiate between core and shell regions of auditory nuclei in the turtle (Pelodiscus sinensis): evolutionary implications.
    Zeng SJ; Xi C; Zhang XW; Zuo MX
    Brain Behav Evol; 2007; 70(3):174-86. PubMed ID: 17595537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity.
    Li J; Zeng SJ; Zhang XW; Zuo MX
    Behav Brain Res; 2006 Sep; 172(2):202-11. PubMed ID: 16806516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary significance of delayed neurogenesis in the core versus shell auditory areas of Mus musculus.
    Zeng SJ; Lin YT; Tian CP; Song KJ; Zhang XW; Zuo MX
    J Comp Neurol; 2009 Aug; 515(5):600-13. PubMed ID: 19480001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of enkephalin, substance P, tyrosine hydroxylase, and 5-hydroxytryptamine immunoreactivity in the septal region of the rat.
    Gall C; Moore RY
    J Comp Neurol; 1984 May; 225(2):212-27. PubMed ID: 6202728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The septal complex of the telencephalon of the lizard Podarcis hispanica. I. Chemoarchitectonical organization.
    Font C; Hoogland PV; Vermeulen van der Zee E; Pérez-Clausell J; Martínez-García F
    J Comp Neurol; 1995 Aug; 359(1):117-30. PubMed ID: 8557841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications.
    Zeng S; Zhang X; Peng W; Zuo M
    J Comp Neurol; 2004 Mar; 470(2):192-209. PubMed ID: 14750161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications.
    Zeng SJ; Tian C; Zhang X; Zuo MX
    Brain Res; 2008 Apr; 1206():44-60. PubMed ID: 18346715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of substance P, enkephalin, and serotonin immunoreactivities in the area postrema of the rat and cat.
    Newton BW; Maley B; Traurig H
    J Comp Neurol; 1985 Apr; 234(1):87-104. PubMed ID: 2579986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis).
    Huang YF; Zhang JY; Xi C; Zeng SJ; Zhang XW; Zuo MX
    Brain Res; 2011 Feb; 1373():67-78. PubMed ID: 21167138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hippocampal opioidergic system: a comparative immunocytochemical study in four rodents.
    Rácz B; Füzesi M; Halasy K
    Neurobiology (Bp); 1998; 6(4):429-41. PubMed ID: 10220778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus).
    Zeng S; Lin Y; Yang L; Zhang X; Zuo M
    Brain Res; 2008 Jun; 1216():24-37. PubMed ID: 18486109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substance P neurokinin 1 receptor activation within the dorsal raphe nucleus controls serotonin release in the mouse frontal cortex.
    Guiard BP; Guilloux JP; Reperant C; Hunt SP; Toth M; Gardier AM
    Mol Pharmacol; 2007 Dec; 72(6):1411-8. PubMed ID: 17890358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-occurrence of substance P and enkephalin-like immunoreactivities in the prosencephalon of two amphibians.
    Taverna D; Mulatero B; Fasolo A
    Eur J Histochem; 1993; 37(1):33-42. PubMed ID: 7682865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense serotonergic innervation of principal nuclei of the superior olivary complex in mouse.
    Thompson AM; Hurley LM
    Neurosci Lett; 2004 Feb; 356(3):179-82. PubMed ID: 15036624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary significance of different neurochemical organisation of the internal and external regions of auditory centres in the reptilian brain: an immunocytochemical and reduced NADPH-diaphorase histochemical study in turtles.
    Belekhova MG; Kenigfest-Rio NB; Vesselkin NP; Rio JP; Repérant J; Ward R
    Brain Res; 2002 Jan; 925(1):100-6. PubMed ID: 11755904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The localization and the sexual differences of substance P in vocal control and part auditory nuclei of Carduelis spinus].
    Zhang XW; Zeng SJ; Zuo MX
    Shi Yan Sheng Wu Xue Bao; 2003 Aug; 36(4):283-8. PubMed ID: 14574992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin immunoreactivity in auditory brainstem neurons of the postnatal monoamine oxidase-A knockout mouse.
    Thompson AM
    Brain Res; 2008 Sep; 1228():58-67. PubMed ID: 18634763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapsin response mediator protein-4 (CRMP-4) expression in posthaching development of song control nuclei in Bengalese finches.
    Zhu N; Sun Y; Zeng S; Zhang X; Zuo M
    Brain Res Bull; 2008 Aug; 76(6):551-8. PubMed ID: 18598844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-fostering diminishes song discrimination in zebra finches (Taeniopygia guttata).
    Campbell DL; Hauber ME
    Anim Cogn; 2009 May; 12(3):481-90. PubMed ID: 19130101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.