These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17389972)

  • 1. Non-fouling microfluidic chip produced by radio frequency tetraglyme plasma deposition.
    Salim M; Mishra G; Fowler GJ; O'sullivan B; Wright PC; McArthur SL
    Lab Chip; 2007 Apr; 7(4):523-5. PubMed ID: 17389972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of fibrinogen adsorption onto glass microcapillary surfaces by ELISA.
    Salim M; O'Sullivan B; McArthur SL; Wright PC
    Lab Chip; 2007 Jan; 7(1):64-70. PubMed ID: 17180206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for characterizing adsorption of flowing solutes to microfluidic device surfaces.
    Hawkins KR; Steedman MR; Baldwin RR; Fu E; Ghosal S; Yager P
    Lab Chip; 2007 Feb; 7(2):281-5. PubMed ID: 17268632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces.
    López GP; Ratner BD; Tidwell CD; Haycox CL; Rapoza RJ; Horbett TA
    J Biomed Mater Res; 1992 Apr; 26(4):415-39. PubMed ID: 1601898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption.
    Bi H; Meng S; Li Y; Guo K; Chen Y; Kong J; Yang P; Zhong W; Liu B
    Lab Chip; 2006 Jun; 6(6):769-75. PubMed ID: 16738729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides.
    Zhang Z; Chao T; Chen S; Jiang S
    Langmuir; 2006 Nov; 22(24):10072-7. PubMed ID: 17107002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion.
    Cao L; Sukavaneshvar S; Ratner BD; Horbett TA
    J Biomed Mater Res A; 2006 Dec; 79(4):788-803. PubMed ID: 16883583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide).
    Chen H; Zhang Z; Chen Y; Brook MA; Sheardown H
    Biomaterials; 2005 May; 26(15):2391-9. PubMed ID: 15585242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma deposition of tetraglyme inside small diameter tubing: optimization and characterization.
    Cao L; Ratner BD; Horbett TA
    J Biomed Mater Res A; 2007 Apr; 81(1):12-23. PubMed ID: 17109409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems.
    Popat KC; Desai TA
    Biosens Bioelectron; 2004 Apr; 19(9):1037-44. PubMed ID: 15018959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether.
    Shen M; Pan YV; Wagner MS; Hauch KD; Castner DG; Ratner BD; Horbett TA
    J Biomater Sci Polym Ed; 2001; 12(9):961-78. PubMed ID: 11787523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices.
    Bhattacharyya A; Klapperich CM
    Lab Chip; 2007 Jul; 7(7):876-82. PubMed ID: 17594007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer.
    Brétagnol F; Lejeune M; Papadopoulou-Bouraoui A; Hasiwa M; Rauscher H; Ceccone G; Colpo P; Rossi F
    Acta Biomater; 2006 Mar; 2(2):165-72. PubMed ID: 16701874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.
    Cao L; Chang M; Lee CY; Castner DG; Sukavaneshvar S; Ratner BD; Horbett TA
    J Biomed Mater Res A; 2007 Jun; 81(4):827-37. PubMed ID: 17236214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step method for generating PEG-like plasma polymer gradients: chemical characterization and analysis of protein interactions.
    Menzies DJ; Cowie B; Fong C; Forsythe JS; Gengenbach TR; McLean KM; Puskar L; Textor M; Thomsen L; Tobin M; Muir BW
    Langmuir; 2010 Sep; 26(17):13987-94. PubMed ID: 20698710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane-based microfluidic devices for blood contacting applications.
    Wu WI; Sask KN; Brash JL; Selvaganapathy PR
    Lab Chip; 2012 Mar; 12(5):960-70. PubMed ID: 22273592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing.
    Lasseter TL; Clare BH; Abbott NL; Hamers RJ
    J Am Chem Soc; 2004 Aug; 126(33):10220-1. PubMed ID: 15315415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.