BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17389993)

  • 1. Supported ionic liquid phase catalysis with supercritical flow.
    Hintermair U; Zhao G; Santini CC; Muldoon MJ; Cole-Hamilton DJ
    Chem Commun (Camb); 2007 Apr; (14):1462-4. PubMed ID: 17389993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems.
    Webb PB; Sellin MF; Kunene TE; Williamson S; Slawin AM; Cole-Hamilton DJ
    J Am Chem Soc; 2003 Dec; 125(50):15577-88. PubMed ID: 14664605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Solventless" continuous flow homogeneous hydroformylation of 1-octene.
    Frisch AC; Webb PB; Zhao G; Muldoon MJ; Pogorzelec PJ; Cole-Hamilton DJ
    Dalton Trans; 2007 Dec; (47):5531-8. PubMed ID: 18043813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier.
    Hintermair U; Gong Z; Serbanovic A; Muldoon MJ; Santini CC; Cole-Hamilton DJ
    Dalton Trans; 2010 Sep; 39(36):8501-10. PubMed ID: 20520868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous flow homogeneous catalysis using supercritical fluids.
    Webb PB; Cole-Hamilton DJ
    Chem Commun (Camb); 2004 Mar; (5):612-3. PubMed ID: 14973633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel dicationic phenoxaphosphino-modified Xantphos-type ligand: a ligand for highly active and selective, biphasic, rhodium catalysed hydroformylation in ionic liquids.
    Bronger RP; Silva SM; Kamer PC; van Leeuwen PW
    Dalton Trans; 2004 May; (10):1590-6. PubMed ID: 15252608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO(2) as the mobile phase.
    Hintermair U; Franciò G; Leitner W
    Chemistry; 2013 Apr; 19(14):4538-47. PubMed ID: 23463487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.
    Riisager A; Jørgensen B; Wasserscheid P; Fehrmann R
    Chem Commun (Camb); 2006 Mar; (9):994-6. PubMed ID: 16491187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleophilic displacements in supercritical carbon dioxide under phase-transfer catalysis conditions. 2. Effect of pressure and kinetics.
    Loris A; Perosa A; Selva M; Tundo P
    J Org Chem; 2003 May; 68(10):4046-51. PubMed ID: 12737589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: continuous-flow fixed-bed hydroformylation of propene.
    Riisager A; Fehrmann R; Flicker S; van Hal R; Haumann M; Wasserscheid P
    Angew Chem Int Ed Engl; 2005 Jan; 44(5):815-9. PubMed ID: 15612079
    [No Abstract]   [Full Text] [Related]  

  • 11. Inverted supercritical carbon dioxide/aqueous biphasic media for rhodium-catalyzed hydrogenation reactions.
    Burgemeister K; Franciò G; Gego VH; Greiner L; Hugl H; Leitner W
    Chemistry; 2007; 13(10):2798-804. PubMed ID: 17295365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supported ionic liquid catalysis--a new concept for homogeneous hydroformylation catalysis.
    Mehnert CP; Cook RA; Dispenziere NC; Afeworki M
    J Am Chem Soc; 2002 Nov; 124(44):12932-3. PubMed ID: 12405804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of a rhodium catalyst using a diphosphine-functionalized ionic liquid in RTIL for the efficient and recyclable biphasic hydroformylation of 1-octene.
    Li YQ; Liu H; Wang P; Yang D; Zhao XL; Liu Y
    Faraday Discuss; 2016 Aug; 190():219-30. PubMed ID: 27195525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate-determining step in the rhodium-xantphos-catalysed hydroformylation of 1-octene.
    Zuidema E; Escorihuela L; Eichelsheim T; Carbó JJ; Bo C; Kamer PC; van Leeuwen PW
    Chemistry; 2008; 14(6):1843-53. PubMed ID: 18061923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium catalysed hydroformylation of alkenes using highly fluorophilic phosphines.
    Adams DJ; Bennett JA; Cole-Hamilton DJ; Hope EG; Hopewell J; Kight J; Pogorzelec P; Stuart AM
    Dalton Trans; 2005 Dec; (24):3862-7. PubMed ID: 16311639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complex.
    Shibahara F; Nozaki K; Hiyama T
    J Am Chem Soc; 2003 Jul; 125(28):8555-60. PubMed ID: 12848563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium.
    Yuan T; Marshall WD
    J Environ Monit; 2007 Dec; 9(12):1344-51. PubMed ID: 18049773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.
    Sankey MH; Holland DJ; Sederman AJ; Gladden LF
    J Magn Reson; 2009 Feb; 196(2):142-8. PubMed ID: 19059796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO(2).
    Seki T; Grunwaldt JD; Baiker A
    J Phys Chem B; 2009 Jan; 113(1):114-22. PubMed ID: 19067550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported ionic liquid phase rhodium nanoparticle hydrogenation catalysts.
    Gelesky MA; Chiaro SS; Pavan FA; dos Santos JH; Dupont J
    Dalton Trans; 2007 Dec; (47):5549-53. PubMed ID: 18043816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.