These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 17390784)
21. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. Kang SM; Radhakrishnan R; Lee IJ World J Microbiol Biotechnol; 2015 Oct; 31(10):1517-27. PubMed ID: 26160009 [TBL] [Abstract][Full Text] [Related]
22. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Hu X; Roberts DP; Jiang M; Zhang Y Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488 [TBL] [Abstract][Full Text] [Related]
23. Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria. Sharifi Tehrani A; Ramezani M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):543-7. PubMed ID: 15151288 [TBL] [Abstract][Full Text] [Related]
24. Biological control of soybean damping-off by antagonistic rhizobacteria. Sharifi Tehrani A; Zebarjad A; Hedjaroud GA; Mohammadi M Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):377-80. PubMed ID: 12701446 [TBL] [Abstract][Full Text] [Related]
25. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Khabbaz SE; Abbasi PA Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923 [TBL] [Abstract][Full Text] [Related]
26. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Solanki MK; Singh RK; Srivastava S; Kumar S; Kashyap PL; Srivastava AK J Basic Microbiol; 2015 Jan; 55(1):82-90. PubMed ID: 24277414 [TBL] [Abstract][Full Text] [Related]
27. The use of natural bio-agents for the control of cotton phytopathogens. Mannanov RN Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):183-6. PubMed ID: 15954583 [TBL] [Abstract][Full Text] [Related]
28. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot. Schroeder KL; Paulitz TC Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081 [TBL] [Abstract][Full Text] [Related]
29. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Mizumoto S; Hirai M; Shoda M Appl Microbiol Biotechnol; 2007 Jul; 75(6):1267-74. PubMed ID: 17453193 [TBL] [Abstract][Full Text] [Related]
30. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713 [TBL] [Abstract][Full Text] [Related]
31. [Effect of plant residues on the parasitic activity of soil-borne pathogens and the saprophytic microflora of the soil. II. Influence of a second crop cultivation one the incidence of Rhizoctonia solani (author's transl]. Naumann K; Lange-de la Camp M Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(5-6):573-92. PubMed ID: 602482 [TBL] [Abstract][Full Text] [Related]
32. Pathogenicity of some Rhizoctonia solaniz isolates associated with root/collar rots on the cultivars of bean in greenhouse. Bohlooli A; Okhovvat SM; Javan-Nikkhah M Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1197-202. PubMed ID: 17390878 [TBL] [Abstract][Full Text] [Related]
33. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. Kondoh M; Hirai M; Shoda M J Biosci Bioeng; 2001; 91(2):173-7. PubMed ID: 16232970 [TBL] [Abstract][Full Text] [Related]
34. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2000 Sep; 155(3):233-42. PubMed ID: 11061193 [TBL] [Abstract][Full Text] [Related]
35. Experiences and perspectives for the use of a Paenibacillus strain as a plant protectant. Maes M; Baeyen S Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):457-62. PubMed ID: 15151278 [TBL] [Abstract][Full Text] [Related]
36. Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi. Nakasaki K; Saito M; Suzuki N FEMS Microbiol Lett; 2007 Oct; 275(2):286-91. PubMed ID: 17850327 [TBL] [Abstract][Full Text] [Related]
37. Induction of Soil Suppressiveness Against Rhizoctonia solani by Incorporation of Dried Plant Residues into Soil. Kasuya M; Olivier AR; Ota Y; Tojo M; Honjo H; Fukui R Phytopathology; 2006 Dec; 96(12):1372-9. PubMed ID: 18943670 [TBL] [Abstract][Full Text] [Related]
38. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi. Ramzan N; Noreen N; Perveen Z; Shahzad S J Sci Food Agric; 2016 Aug; 96(11):3694-700. PubMed ID: 26619828 [TBL] [Abstract][Full Text] [Related]
39. Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium. Harris AR Microbiol Res; 2000 Mar; 154(4):333-7. PubMed ID: 10772155 [TBL] [Abstract][Full Text] [Related]
40. Sustainable management of peanut damping-off and root rot diseases caused by Rhizoctonia solani using environmentally friendly bio-formulations prepared from batch fermentation broth of chitinase-producing Streptomyces cellulosae. Abo-Zaid GA; Darwish MH; Ghozlan HA; Abdel-Gayed MA; Sabry SA BMC Plant Biol; 2024 Aug; 24(1):760. PubMed ID: 39118060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]