These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 17390871)
21. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
22. Role of the European corn borer (Ostrinia nubilalis) on contamination of maize with 13 Fusarium mycotoxins. Blandino M; Scarpino V; Vanara F; Sulyok M; Krska R; Reyneri A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):533-43. PubMed ID: 25266165 [TBL] [Abstract][Full Text] [Related]
23. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Edwards SG Toxicol Lett; 2004 Oct; 153(1):29-35. PubMed ID: 15342078 [TBL] [Abstract][Full Text] [Related]
24. Comparison of two selective culture media for the detection of Fusarium infection in conventional and transgenic maize kernels. Alborch L; Bragulat MR; Cabañes FJ Lett Appl Microbiol; 2010 Mar; 50(3):270-5. PubMed ID: 20070505 [TBL] [Abstract][Full Text] [Related]
25. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Logrieco A; Moretti A; Perrone G; Mulè G Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992 [TBL] [Abstract][Full Text] [Related]
26. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. Quesada-Ocampo LM; Al-Haddad J; Scruggs AC; Buell CR; Trail F Phytopathology; 2016 Aug; 106(8):920-7. PubMed ID: 27050573 [TBL] [Abstract][Full Text] [Related]
27. Occurrence of the mycotoxin moniliformin in maize (Zea mays L.) ears infected by Fusarium subglutinans (Wollenw. & Reinking) Nelson et al. Lew H; Chelkowski J; Pronczuk P; Edinger W Food Addit Contam; 1996 Apr; 13(3):321-4. PubMed ID: 8718747 [TBL] [Abstract][Full Text] [Related]
28. Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. Gai X; Dong H; Wang S; Liu B; Zhang Z; Li X; Gao Z PLoS One; 2018; 13(7):e0201588. PubMed ID: 30063754 [TBL] [Abstract][Full Text] [Related]
29. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland. Czembor E; Stępień Ł; Waśkiewicz A Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873 [TBL] [Abstract][Full Text] [Related]
30. Effect of plant water deficit on the deoxynivalenol concentration in Fusarium-infected maize kernels. Oldenburg E; Schittenhelm S Mycotoxin Res; 2012 Nov; 28(4):229-36. PubMed ID: 23606194 [TBL] [Abstract][Full Text] [Related]
31. The influence of local factors on the prediction of fumonisin contamination in maize. Torelli E; Firrao G; Bianchi G; Saccardo F; Locci R J Sci Food Agric; 2012 Jun; 92(8):1808-14. PubMed ID: 22228027 [TBL] [Abstract][Full Text] [Related]
32. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum. Oldenburg E; Ellner F Mycotoxin Res; 2015 Aug; 31(3):117-26. PubMed ID: 25904523 [TBL] [Abstract][Full Text] [Related]
33. Breeding maize for resistance to ear rot caused by Fusarium moniliforme. Hefny M; Attaa S; Bayoumi T; Ammar S; El-Bramawy M Pak J Biol Sci; 2012 Jan; 15(2):78-84. PubMed ID: 22545360 [TBL] [Abstract][Full Text] [Related]
34. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in Maize Grain Grown in Poland. Czembor E; Stępień Ł; Waśkiewicz A PLoS One; 2015; 10(7):e0133644. PubMed ID: 26225823 [TBL] [Abstract][Full Text] [Related]
35. The Relationship Analysis on Corn Stalk Rot and Ear Rot According to Li L; Qu Q; Cao Z; Guo Z; Jia H; Liu N; Wang Y; Dong J Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31195636 [No Abstract] [Full Text] [Related]
36. Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Schaafsma AW; Hooker DC Int J Food Microbiol; 2007 Oct; 119(1-2):116-25. PubMed ID: 17900733 [TBL] [Abstract][Full Text] [Related]
37. Reduction of Fusarium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole. Edwards SG; Godley NP Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):629-35. PubMed ID: 20349372 [TBL] [Abstract][Full Text] [Related]
38. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912 [TBL] [Abstract][Full Text] [Related]
39. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. Berardo N; Pisacane V; Battilani P; Scandolara A; Pietri A; Marocco A J Agric Food Chem; 2005 Oct; 53(21):8128-34. PubMed ID: 16218654 [TBL] [Abstract][Full Text] [Related]
40. [Marking of the loci encoding maize resistance to Fusarium]. Kozhukhova NE; Syvolap IuM; Varenyk BF; Sokolov VM Tsitol Genet; 2007; 41(2):37-41. PubMed ID: 17494342 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]