These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17391374)
1. Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell-surface hydrophobicity. Obuekwe CO; Al-Jadi ZK; Al-Saleh ES FEMS Microbiol Lett; 2007 May; 270(2):214-9. PubMed ID: 17391374 [TBL] [Abstract][Full Text] [Related]
2. Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants of Pseudomonas aeruginosa. Obuekwe CO; Al-Jadi ZK; Al-Saleh ES J Appl Microbiol; 2008 Dec; 105(6):1876-87. PubMed ID: 19120636 [TBL] [Abstract][Full Text] [Related]
3. Insight into heterogeneity in cell-surface hydrophobicity and ability to degrade hydrocarbons among cells of two hydrocarbon-degrading bacterial populations. Obuekwe CO; Al-Jadi ZK; Al-Saleh E Can J Microbiol; 2007 Feb; 53(2):252-60. PubMed ID: 17496974 [TBL] [Abstract][Full Text] [Related]
4. Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents. Gaur R; Khare SK Lett Appl Microbiol; 2009 Sep; 49(3):372-7. PubMed ID: 19712193 [TBL] [Abstract][Full Text] [Related]
5. Morphologic features and hydrophobicity of the cell surface of Mycoplasma hyopneumoniae. Zielinski GC; Ross RF Am J Vet Res; 1992 Jul; 53(7):1119-24. PubMed ID: 1323225 [TBL] [Abstract][Full Text] [Related]
6. Drastic change in cell surface hydrophobicity of a new bacterial strain, Pseudomonas sp. TIS1-127, induced by growth temperature and its effects on the toluene-conversion rate. Hori K; Hiramatsu N; Nannbu M; Kanie K; Okochi M; Honda H; Watanabe H J Biosci Bioeng; 2009 Mar; 107(3):250-5. PubMed ID: 19269587 [TBL] [Abstract][Full Text] [Related]
7. [Bactericidal action of human serum against Pseudomonas aeruginosa strains with hydrophilic or hydrophobic cell surface]. Wojnicz D; Korzekwa K; Cisowska A Med Dosw Mikrobiol; 2008; 60(4):303-9. PubMed ID: 19382602 [TBL] [Abstract][Full Text] [Related]
8. Bacterial surface characteristics applied to selection of probiotic microorganisms. Otero MC; Ocaña VS; Elena Nader-Macías M Methods Mol Biol; 2004; 268():435-40. PubMed ID: 15156054 [TBL] [Abstract][Full Text] [Related]
9. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508 [TBL] [Abstract][Full Text] [Related]
10. Salt modulates bacterial hydrophobicity and charge properties influencing adhesion of Pseudomonas aeruginosa (PA01) in aqueous suspensions. Shephard JJ; Savory DM; Bremer PJ; McQuillan AJ Langmuir; 2010 Jun; 26(11):8659-65. PubMed ID: 20415441 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784 [TBL] [Abstract][Full Text] [Related]
13. Microbially induced separation of quartz from hematite using sulfate reducing bacteria. Prakasan MR; Natarajan KA Colloids Surf B Biointerfaces; 2010 Jul; 78(2):163-70. PubMed ID: 20347277 [TBL] [Abstract][Full Text] [Related]
14. Long-term influence of the presence of a non-aqueous phase on the cell surface hydrophobicity of Pseudomonas in two-phase partitioning bioreactors. Hernández M; Torre RM Appl Microbiol Biotechnol; 2011 Mar; 89(5):1573-81. PubMed ID: 21057943 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities. Marcus IM; Herzberg M; Walker SL; Freger V Langmuir; 2012 Apr; 28(15):6396-402. PubMed ID: 22439703 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation. Campillo-Fernández AJ; Unger RE; Peters K; Halstenberg S; Santos M; Salmerón Sánchez M; Meseguer Dueñas JM; Monleón Pradas M; Gómez Ribelles JL; Kirkpatrick CJ Tissue Eng Part A; 2009 Jun; 15(6):1331-41. PubMed ID: 18976156 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Zhong H; Zeng GM; Yuan XZ; Fu HY; Huang GH; Ren FY Appl Microbiol Biotechnol; 2007 Nov; 77(2):447-55. PubMed ID: 17899072 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095 [TBL] [Abstract][Full Text] [Related]
19. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821 [TBL] [Abstract][Full Text] [Related]
20. [The effect of culture conditions on hydrophobic properties of Pseudomonas aeruginosa]. Wolska K; Pogorzelska S; Fijoł E; Jakubczak A; Bukowski K Med Dosw Mikrobiol; 2002; 54(1):61-6. PubMed ID: 12185685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]