These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17391416)

  • 1. Population structure at the S-locus of Sorbus aucuparia L. (Rosaceae: Maloideae).
    Raspé O; Kohn JR
    Mol Ecol; 2007 Mar; 16(6):1315-25. PubMed ID: 17391416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae).
    Raspé O; Kohn JR
    Heredity (Edinb); 2002 Jun; 88(6):458-65. PubMed ID: 12180088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gametophytic self-incompatibility in Lycium parishii (Solanaceae): allelic diversity, genealogical structure, and patterns of molecular evolution at the S-RNase locus.
    Savage AE; Miller JS
    Heredity (Edinb); 2006 Jun; 96(6):434-44. PubMed ID: 16622475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular variation at the self-incompatibility locus in natural populations of the genera Antirrhinum and Misopates.
    Vieira CP; Charlesworth D
    Heredity (Edinb); 2002 Mar; 88(3):172-81. PubMed ID: 11920118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allelic diversity of S-RNase at the self-incompatibility locus in natural flowering cherry populations (Prunus lannesiana var. speciosa).
    Kato S; Mukai Y
    Heredity (Edinb); 2004 Mar; 92(3):249-56. PubMed ID: 14710172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites.
    Schueler S; Tusch A; Scholz F
    Mol Ecol; 2006 Oct; 15(11):3231-43. PubMed ID: 16968267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two neutral variants segregating at the gametophytic self-incompatibility locus of European pear (Pyrus communis L.) (Rosaceae, Pyrinae).
    Sanzol J
    Plant Biol (Stuttg); 2010 Sep; 12(5):800-5. PubMed ID: 20701704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary analysis of S-RNase genes from Rosaceae species.
    Ma RC; Oliveira MM
    Mol Genet Genomics; 2002 Mar; 267(1):71-8. PubMed ID: 11919717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uneven segregation of sporophytic self-incompatibility alleles in Arabidopsis lyrata.
    Bechsgaard J; Bataillon T; Schierup MH
    J Evol Biol; 2004 May; 17(3):554-61. PubMed ID: 15149398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for genetic drift in the diversification of a geographically isolated population of the hyperthermophilic archaeon Pyrococcus.
    Escobar-Páramo P; Ghosh S; DiRuggiero J
    Mol Biol Evol; 2005 Nov; 22(11):2297-303. PubMed ID: 16079249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tale of two continents: Baker's rule and the maintenance of self-incompatibility in Lycium (Solanaceae).
    Miller JS; Levin RA; Feliciano NM
    Evolution; 2008 May; 62(5):1052-65. PubMed ID: 18315577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
    Castric V; Vekemans X
    Mol Ecol; 2004 Oct; 13(10):2873-89. PubMed ID: 15367105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-incompatibility of Prunus tenella and evidence that reproductively isolated species of Prunus have different SFB alleles coupled with an identical S-RNase allele.
    Surbanovski N; Tobutt KR; Konstantinović M; Maksimović V; Sargent DJ; Stevanović V; Bosković RI
    Plant J; 2007 May; 50(4):723-34. PubMed ID: 17461794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the genetic bases of climatic adaptation in experimentally evolving wheat populations.
    Rhoné B; Remoué C; Galic N; Goldringer I; Bonnin I
    Mol Ecol; 2008 Feb; 17(3):930-43. PubMed ID: 18194164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative phylogeography and genetic structure of Vanuatu birds: control region variation in a rail, a dove, and a passerine.
    Kirchman JJ; Franklin JD
    Mol Phylogenet Evol; 2007 Apr; 43(1):14-23. PubMed ID: 17321760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No evidence for the 'Meselson effect' in parthenogenetic oribatid mites (Oribatida, Acari).
    Schaefer I; Domes K; Heethoff M; Schneider K; Schön I; Norton RA; Scheu S; Maraun M
    J Evol Biol; 2006 Jan; 19(1):184-93. PubMed ID: 16405590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid recent radiation of S-RNase lineages in Witheringia solanacea (Solanaceae).
    Stone JL; Pierce SE
    Heredity (Edinb); 2005 May; 94(5):547-55. PubMed ID: 15770231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 15-Myr-old genetic bottleneck.
    Paape T; Igic B; Smith SD; Olmstead R; Bohs L; Kohn JR
    Mol Biol Evol; 2008 Apr; 25(4):655-63. PubMed ID: 18209194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data.
    Pérez-Portela R; Turon X
    Zoology (Jena); 2008; 111(2):163-78. PubMed ID: 18261892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining self-incompatibility genotypes in Belgian wild cherries.
    De Cuyper B; Sonneveld T; Tobutt KR
    Mol Ecol; 2005 Apr; 14(4):945-55. PubMed ID: 15773927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.