These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17391433)

  • 41. Inhibition of glycosylation on a camelid antibody uniquely affects its FcγRI binding activity.
    Krahn N; Spearman M; Meier M; Dorion-Thibaudeau J; McDougall M; Patel TR; De Crescenzo G; Durocher Y; Stetefeld J; Butler M
    Eur J Pharm Sci; 2017 Jan; 96():428-439. PubMed ID: 27721040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. N-glycosylation is required for binding of murine pregnancy-specific glycoproteins 17 and 19 to the receptor CD9.
    Ha CT; Waterhouse R; Warren J; Zimmermann W; Dveksler GS
    Am J Reprod Immunol; 2008 Mar; 59(3):251-8. PubMed ID: 18275518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines.
    Pande S; Rahardjo A; Livingston B; Mujacic M
    Biotechnol Bioeng; 2015 Jul; 112(7):1383-94. PubMed ID: 25619381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.
    Pacis E; Yu M; Autsen J; Bayer R; Li F
    Biotechnol Bioeng; 2011 Oct; 108(10):2348-58. PubMed ID: 21557201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development.
    Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS
    Front Immunol; 2017; 8():1554. PubMed ID: 29181010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Alternative production systems for therapeutic monoclonal antibodies].
    Olivier S; Mehtali M
    Med Sci (Paris); 2009 Dec; 25(12):1163-8. PubMed ID: 20035699
    [No Abstract]   [Full Text] [Related]  

  • 47. NanoLC Chips MS/MS for the characterization of N-glycopeptides generated from trypsin digestion of a monoclonal antibody.
    Wagner-Rousset E; Schaeffer-Reiss C; Bednarczyk A; Corvaïa N; Van Dorsselaer A; Beck A
    Methods Mol Biol; 2013; 988():81-91. PubMed ID: 23475715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells.
    Costa AR; Withers J; Rodrigues ME; McLoughlin N; Henriques M; Oliveira R; Rudd PM; Azeredo J
    N Biotechnol; 2013 Jun; 30(5):563-72. PubMed ID: 23247406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glycoengineering design options for IgG1 in CHO cells using precise gene editing.
    Schulz MA; Tian W; Mao Y; Van Coillie J; Sun L; Larsen JS; Chen YH; Kristensen C; Vakhrushev SY; Clausen H; Yang Z
    Glycobiology; 2018 Jul; 28(7):542-549. PubMed ID: 29596681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of glycan modification on IgG1 biochemical and biophysical properties.
    Pawlowski JW; Bajardi-Taccioli A; Houde D; Feschenko M; Carlage T; Kaltashov IA
    J Pharm Biomed Anal; 2018 Mar; 151():133-144. PubMed ID: 29324282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering a human-like glycosylation to produce therapeutic glycoproteins based on 6-linked sialylation in CHO cells.
    El Maï N; Donadio-Andréi S; Iss C; Calabro V; Ronin C
    Methods Mol Biol; 2013; 988():19-29. PubMed ID: 23475711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapeutic monoclonal antibody N-glycosylation - Structure, function and therapeutic potential.
    Cymer F; Beck H; Rohde A; Reusch D
    Biologicals; 2018 Mar; 52():1-11. PubMed ID: 29239840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning a MAb glycan profile in cell culture: Supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth.
    Blondeel EJ; Braasch K; McGill T; Chang D; Engel C; Spearman M; Butler M; Aucoin MG
    J Biotechnol; 2015 Nov; 214():105-12. PubMed ID: 26387447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antibody glycoengineering strategies in mammalian cells.
    Wang Q; Chung CY; Chough S; Betenbaugh MJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1378-1393. PubMed ID: 29457629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational selection of an antibody probe to detect the heterogeneous collection of CHO-derived rhGM-CSF glycoforms.
    Oggero M; Forno G; Kratje R; Etcheverrigaray M
    Biotechnol Lett; 2006 Dec; 28(24):2049-56. PubMed ID: 17004006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of low-glycosylated forms of soluble human urokinase receptor expressed in Drosophila Schneider 2 cells after deletion of glycosylation-sites.
    Gårdsvoll H; Werner F; Søndergaard L; Danø K; Ploug M
    Protein Expr Purif; 2004 Apr; 34(2):284-95. PubMed ID: 15003263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions.
    Kellner C; Derer S; Valerius T; Peipp M
    Methods; 2014 Jan; 65(1):105-13. PubMed ID: 23851282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation.
    Liu CP; Tsai TI; Cheng T; Shivatare VS; Wu CY; Wu CY; Wong CH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):720-725. PubMed ID: 29311294
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation.
    Shibata-Koyama M; Iida S; Okazaki A; Mori K; Kitajima-Miyama K; Saitou S; Kakita S; Kanda Y; Shitara K; Kato K; Satoh M
    Glycobiology; 2009 Feb; 19(2):126-34. PubMed ID: 18952826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL.
    van Sorge NM; Bleumink NM; van Vliet SJ; Saeland E; van der Pol WL; van Kooyk Y; van Putten JP
    Cell Microbiol; 2009 Dec; 11(12):1768-81. PubMed ID: 19681908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.