These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 17391646)
1. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Li H; Dai K; Tang T; Zhang X; Yan M; Lou J Biochem Biophys Res Commun; 2007 May; 356(4):836-42. PubMed ID: 17391646 [TBL] [Abstract][Full Text] [Related]
2. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering. E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786 [TBL] [Abstract][Full Text] [Related]
3. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Zeng Q; Li X; Beck G; Balian G; Shen FH Bone; 2007 Feb; 40(2):374-81. PubMed ID: 17070126 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Yang M; Ma QJ; Dang GT; Ma Kt; Chen P; Zhou CY Cytotherapy; 2005; 7(3):273-81. PubMed ID: 16081354 [TBL] [Abstract][Full Text] [Related]
5. Bone induction by BMP-2 transduced stem cells derived from human fat. Dragoo JL; Choi JY; Lieberman JR; Huang J; Zuk PA; Zhang J; Hedrick MH; Benhaim P J Orthop Res; 2003 Jul; 21(4):622-9. PubMed ID: 12798061 [TBL] [Abstract][Full Text] [Related]
6. Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, beta-tricalcium phosphate granules, and rhBMP-2. Uchida M; Agata H; Sagara H; Shinohara Y; Kagami H; Asahina I J Biomed Mater Res A; 2009 Oct; 91(1):84-91. PubMed ID: 18767063 [TBL] [Abstract][Full Text] [Related]
7. BMP2 gene therapy on the repair of bone defects of aged rats. Yue B; Lu B; Dai KR; Zhang XL; Yu CF; Lou JR; Tang TT Calcif Tissue Int; 2005 Dec; 77(6):395-403. PubMed ID: 16362458 [TBL] [Abstract][Full Text] [Related]
8. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704 [TBL] [Abstract][Full Text] [Related]
9. Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Chuang CK; Sung LY; Hwang SM; Lo WH; Chen HC; Hu YC Gene Ther; 2007 Oct; 14(19):1417-24. PubMed ID: 17637796 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). Maegawa N; Kawamura K; Hirose M; Yajima H; Takakura Y; Ohgushi H J Tissue Eng Regen Med; 2007; 1(4):306-13. PubMed ID: 18038421 [TBL] [Abstract][Full Text] [Related]
11. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Otsuru S; Tamai K; Yamazaki T; Yoshikawa H; Kaneda Y Stem Cells; 2008 Jan; 26(1):223-34. PubMed ID: 17932420 [TBL] [Abstract][Full Text] [Related]
12. Endogenous bone morphogenetic proteins in human bone marrow-derived multipotent mesenchymal stromal cells. Seib FP; Franke M; Jing D; Werner C; Bornhäuser M Eur J Cell Biol; 2009 May; 88(5):257-71. PubMed ID: 19303661 [TBL] [Abstract][Full Text] [Related]
13. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo. Zhang X; Yang M; Lin L; Chen P; Ma KT; Zhou CY; Ao YF Calcif Tissue Int; 2006 Sep; 79(3):169-78. PubMed ID: 16969589 [TBL] [Abstract][Full Text] [Related]
14. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Kanczler JM; Ginty PJ; White L; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO Biomaterials; 2010 Feb; 31(6):1242-50. PubMed ID: 19926128 [TBL] [Abstract][Full Text] [Related]
15. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. Tsuda H; Wada T; Yamashita T; Hamada H J Gene Med; 2005 Oct; 7(10):1322-34. PubMed ID: 15926193 [TBL] [Abstract][Full Text] [Related]
16. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. Hennig T; Lorenz H; Thiel A; Goetzke K; Dickhut A; Geiger F; Richter W J Cell Physiol; 2007 Jun; 211(3):682-91. PubMed ID: 17238135 [TBL] [Abstract][Full Text] [Related]
17. Dexamethasone modulates BMP-2 effects on mesenchymal stem cells in vitro. Jäger M; Fischer J; Dohrn W; Li X; Ayers DC; Czibere A; Prall WC; Lensing-Höhn S; Krauspe R J Orthop Res; 2008 Nov; 26(11):1440-8. PubMed ID: 18404732 [TBL] [Abstract][Full Text] [Related]
18. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Virk MS; Conduah A; Park SH; Liu N; Sugiyama O; Cuomo A; Kang C; Lieberman JR Bone; 2008 May; 42(5):921-31. PubMed ID: 18295562 [TBL] [Abstract][Full Text] [Related]
19. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Kuroda R; Usas A; Kubo S; Corsi K; Peng H; Rose T; Cummins J; Fu FH; Huard J Arthritis Rheum; 2006 Feb; 54(2):433-42. PubMed ID: 16447218 [TBL] [Abstract][Full Text] [Related]
20. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. Cho HH; Park HT; Kim YJ; Bae YC; Suh KT; Jung JS J Cell Biochem; 2005 Oct; 96(3):533-42. PubMed ID: 16088945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]