BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17391732)

  • 41. Secondary arsenic minerals in the environment: a review.
    Drahota P; Filippi M
    Environ Int; 2009 Nov; 35(8):1243-55. PubMed ID: 19665230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The environmental fate of arsenic in surface soil contaminated by historical herbicide application.
    Qi Y; Donahoe RJ
    Sci Total Environ; 2008 Nov; 405(1-3):246-54. PubMed ID: 18706676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of four extraction procedures to assess arsenate and arsenite species in contaminated soils.
    Giral M; Zagury GJ; Deschênes L; Blouin JP
    Environ Pollut; 2010 May; 158(5):1890-8. PubMed ID: 19945202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil.
    Almeida MD; Lacerda LD; Bastos WR; Herrmann JC
    Environ Pollut; 2005 Sep; 137(2):179-86. PubMed ID: 15885862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Field fluxes and speciation of arsines emanating from soils.
    Mestrot A; Feldmann J; Krupp EM; Hossain MS; Roman-Ross G; Meharg AA
    Environ Sci Technol; 2011 Mar; 45(5):1798-804. PubMed ID: 21284382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal.
    Bhattacharyya P; Tripathy S; Kim K; Kim SH
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):149-56. PubMed ID: 17919724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arsenic speciation in field-collected and laboratory-exposed earthworms Lumbricus terrestris.
    Button M; Moriarty MM; Watts MJ; Zhang J; Koch I; Reimer KJ
    Chemosphere; 2011 Nov; 85(8):1277-83. PubMed ID: 21868054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing arsenic concentrations in runoff from 12 small forested catchments (Czech Republic, Central Europe): patterns and controls.
    Novak M; Erbanova L; Fottova D; Voldrichova P; Prechova E; Blaha V; Veselovsky F; Krachler M
    Sci Total Environ; 2010 Aug; 408(17):3614-22. PubMed ID: 20494405
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Remediation of arsenic-contaminated soils and washing effluents.
    Jang M; Hwang JS; Choi SI; Park JK
    Chemosphere; 2005 Jul; 60(3):344-54. PubMed ID: 15924953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arsenic accumulation in irrigated agricultural soils in Northern Greece.
    Casentini B; Hug SJ; Nikolaidis NP
    Sci Total Environ; 2011 Oct; 409(22):4802-10. PubMed ID: 21899879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.
    Datta R; Makris KC; Sarkar D
    Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retention of phenylarsenicals in soils derived from volcanic materials.
    Arroyo-Abad U; Elizalde-González MP; Hidalgo-Moreno CM; Mattusch J; Wennrich R
    J Hazard Mater; 2011 Feb; 186(2-3):1328-34. PubMed ID: 21194836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils.
    Vázquez S; Carpena RO; Bernal MP
    Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 137Cs in the fungal compartment of Swedish forest soils.
    Vinichuk MM; Johanson KJ; Taylor AF
    Sci Total Environ; 2004 May; 323(1-3):243-51. PubMed ID: 15081731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils.
    Ernst G; Zimmermann S; Christie P; Frey B
    Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic speciation in farmed Hungarian freshwater fish.
    Soeroes C; Goessler W; Francesconi KA; Kienzl N; Schaeffer R; Fodor P; Kuehnelt D
    J Agric Food Chem; 2005 Nov; 53(23):9238-43. PubMed ID: 16277428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy.
    Schmidt AC; Kutschera K; Mattusch J; Otto M
    Chemosphere; 2008 Dec; 73(11):1781-7. PubMed ID: 18848716
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice.
    Zhao FJ; Harris E; Yan J; Ma J; Wu L; Liu W; McGrath SP; Zhou J; Zhu YG
    Environ Sci Technol; 2013 Jul; 47(13):7147-54. PubMed ID: 23750559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.