These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 17391735)
1. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching. Whelan MJ; Davenport EJ; Smith BG Sci Total Environ; 2007 May; 377(2-3):192-206. PubMed ID: 17391735 [TBL] [Abstract][Full Text] [Related]
2. Uncalibrated modelling of conservative tracer and pesticide leaching to groundwater: comparison of potential Tier II exposure assessment models. Fox GA; Sabbagh GJ; Chen W; Russell MH Pest Manag Sci; 2006 Jun; 62(6):537-50. PubMed ID: 16625679 [TBL] [Abstract][Full Text] [Related]
3. Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Garratt JA; Capri E; Trevisan M; Errera G; Wilkins RM Pest Manag Sci; 2003 Jan; 59(1):3-20. PubMed ID: 12558095 [TBL] [Abstract][Full Text] [Related]
4. Identification of key climatic factors regulating the transport of pesticides in leaching and to tile drains. Nolan BT; Dubus IG; Surdyk N; Fowler HJ; Burton A; Hollis JM; Reichenberger S; Jarvis NJ Pest Manag Sci; 2008 Sep; 64(9):933-44. PubMed ID: 18416432 [TBL] [Abstract][Full Text] [Related]
5. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks. Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347 [TBL] [Abstract][Full Text] [Related]
6. Soil column leaching of pesticides. Katagi T Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity analyses for four pesticide leaching models. Dubus IG; Brown CD; Beulke S Pest Manag Sci; 2003 Sep; 59(9):962-82. PubMed ID: 12974348 [TBL] [Abstract][Full Text] [Related]
8. Influence of dispersion length on leaching calculated with PEARL, PELMO and PRZM for FOCUS groundwater scenarios. Boesten JJ Pest Manag Sci; 2004 Oct; 60(10):971-80. PubMed ID: 15481823 [TBL] [Abstract][Full Text] [Related]
9. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
10. Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales. Holman IP; Dubus IG; Hollis JM; Brown CD Sci Total Environ; 2004 Jan; 318(1-3):73-88. PubMed ID: 14654276 [TBL] [Abstract][Full Text] [Related]
11. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till. Stenemo F; Jørgensen PR; Jarvis N J Contam Hydrol; 2005 Sep; 79(1-2):89-106. PubMed ID: 16061305 [TBL] [Abstract][Full Text] [Related]
12. Influence of input uncertainty on prediction of within-field pesticide leaching risks. Lindahl AM; Söderström M; Jarvis N J Contam Hydrol; 2008 Jun; 98(3-4):106-14. PubMed ID: 18495293 [TBL] [Abstract][Full Text] [Related]
13. A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USA. Stenemo F; Ray C; Yost R; Matsuda S Pest Manag Sci; 2007 Apr; 63(4):404-11. PubMed ID: 17315270 [TBL] [Abstract][Full Text] [Related]
14. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level. Probst M; Berenzen N; Lentzen-Godding A; Schulz R Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635 [TBL] [Abstract][Full Text] [Related]
15. Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Papa E; Castiglioni S; Gramatica P; Nikolayenko V; Kayumov O; Calamari D Water Res; 2004 Sep; 38(16):3485-94. PubMed ID: 15325174 [TBL] [Abstract][Full Text] [Related]
16. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater. Vanderborght J; Tiktak A; Boesten JJ; Vereecken H Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955 [TBL] [Abstract][Full Text] [Related]
17. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil. Bhavsar SP; Gandhi N; Diamond ML Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882 [TBL] [Abstract][Full Text] [Related]
18. Simulation of pesticide leaching in a cracking clay soil with the PEARL model. Scorza Júnior RP; Boesten JJ Pest Manag Sci; 2005 May; 61(5):432-48. PubMed ID: 15643643 [TBL] [Abstract][Full Text] [Related]
19. Comparison of models of simazine transport and fate in the subsurface environment in a citrus farm. Chang NB; Srilakshmi KR; Parvathinathan G J Environ Manage; 2008 Jan; 86(1):27-43. PubMed ID: 17240524 [TBL] [Abstract][Full Text] [Related]
20. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]