BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 17391881)

  • 1. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
    Meyer K; Rouiller EM; Loquet G
    Hear Res; 2007 Jun; 228(1-2):144-55. PubMed ID: 17391881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matching the neural adaptation in the rat ventral cochlear nucleus produced by artificial (electric) and acoustic stimulation of the cochlea.
    Loquet G; Pelizzone M; Valentini G; Rouiller EM
    Audiol Neurootol; 2004; 9(3):144-59. PubMed ID: 15084819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neural Eng; 2009 Dec; 6(6):065003. PubMed ID: 19850978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat.
    Loquet G; Rouiller EM
    Hear Res; 2002 Sep; 171(1-2):72-81. PubMed ID: 12204351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat.
    Loquet G; Meyer K; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):436-42. PubMed ID: 14574431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation of the cochlear nerve in rats: analysis of c-Fos expression in auditory brainstem nuclei.
    Nakamura M; Rosahl SK; Alkahlout E; Walter GF; Samii MM
    Brain Res; 2005 Jan; 1031(1):39-55. PubMed ID: 15621011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
    Junius D; Dau T
    Hear Res; 2005 Jul; 205(1-2):53-67. PubMed ID: 15953515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing ampli-tonotopic organization of rat auditory cortex by microstimulation of cochlear nucleus.
    Takahashi H; Nakao M; Kaga K
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1333-44. PubMed ID: 16041997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: Comparison to cochlear implant and auditory brainstem implant results.
    Lim HH; Lenarz T; Joseph G; Battmer RD; Patrick JF; Lenarz M
    Neuroscience; 2008 Jun; 154(1):370-80. PubMed ID: 18384971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve.
    Shepherd RK; Roberts LA; Paolini AG
    Eur J Neurosci; 2004 Dec; 20(11):3131-40. PubMed ID: 15579167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy.
    Santarelli R; Starr A; Michalewski HJ; Arslan E
    Clin Neurophysiol; 2008 May; 119(5):1028-41. PubMed ID: 18358774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rebound depolarization in single units of the ventral cochlear nucleus: a contribution to grouping by common onset?
    Bleeck S; Ingham NJ; Verhey JL; Winter IM
    Neuroscience; 2008 Jun; 154(1):139-46. PubMed ID: 18479835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode independence in intraneural cochlear nerve stimulation.
    Badi AN; Owa AO; Shelton C; Normann RA
    Otol Neurotol; 2007 Jan; 28(1):16-24. PubMed ID: 17195741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the electrically evoked compound action potential (ECAP) recorded from nucleus CI24 cochlear implant users.
    Clay KM; Brown CJ
    Ear Hear; 2007 Dec; 28(6):850-61. PubMed ID: 17982371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI).
    Brozoski TJ; Ciobanu L; Bauer CA
    Hear Res; 2007 Jun; 228(1-2):168-79. PubMed ID: 17382501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.