These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17392336)

  • 1. Behaviours of pulmonary sensory receptors during development of acute lung injury in the rabbit.
    Lin S; Walker J; Xu L; Gozal D; Yu J
    Exp Physiol; 2007 Jul; 92(4):749-55. PubMed ID: 17392336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airway nociceptors activated by pro-inflammatory cytokines.
    Yu J; Lin S; Zhang J; Otmishi P; Guardiola JJ
    Respir Physiol Neurobiol; 2007 May; 156(2):116-9. PubMed ID: 17182290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arachidonic acid products in airway nociceptor activation during acute lung injury.
    Lin S; Li H; Xu L; Moldoveanu B; Guardiola J; Yu J
    Exp Physiol; 2011 Sep; 96(9):966-76. PubMed ID: 21622966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airway chemosensitive receptors in vagus nerve perform neuro-immune interaction for lung-brain communication.
    Li HF; Yu J
    Adv Exp Med Biol; 2009; 648():421-6. PubMed ID: 19536507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single pulmonary mechano-sensory unit possesses multiple encoders in rabbits.
    Yu J; Zhang J
    Neurosci Lett; 2004 May; 362(3):171-5. PubMed ID: 15158007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of functional residual capacity of the lung by partial CO2 rebreathing method during acute lung injury in animals.
    Brewer LM; Haryadi DG; Orr JA
    Respir Care; 2007 Nov; 52(11):1480-9. PubMed ID: 17971251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of pulmonary receptors on respiratory drive in a rabbit model of pulmonary emphysema.
    Dallak MA; Pirie LJ; Davies A
    Respir Physiol Neurobiol; 2007 Apr; 156(1):33-9. PubMed ID: 16971190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory mechanism of CO2 inhalation on slowly adapting pulmonary stretch receptors in the anesthetized rabbit.
    Matsumoto S; Okamura H; Suzuki K; Sugai N; Shimizu T
    J Pharmacol Exp Ther; 1996 Oct; 279(1):402-9. PubMed ID: 8859019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Protective effect of rupatadine against oleic acid-induced acute lung injury in rabbits].
    Zhang LL; Lu J; Yu SQ; He JL; Zhou M; Xu GL
    Yao Xue Xue Bao; 2007 Mar; 42(3):252-6. PubMed ID: 17520822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Protective effect of putrescine on oleic acid-induced respiratory distress syndrome (RDS)].
    Zhao D; Liu PH; Fu AH
    Zhonghua Jie He He Hu Xi Za Zhi; 1994 Jun; 17(3):156-8, 190. PubMed ID: 7834771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chest wall in acute lung injury/acute respiratory distress syndrome.
    Hess DR; Bigatello LM
    Curr Opin Crit Care; 2008 Feb; 14(1):94-102. PubMed ID: 18195633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endotoxin-induced acute lung injury and organ dysfunction are attenuated by pentobarbital anaesthesia.
    Kao SJ; Su CF; Liu DD; Chen HI
    Clin Exp Pharmacol Physiol; 2007; 34(5-6):480-7. PubMed ID: 17439419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the chest wall on pressure-volume curve analysis of acute respiratory distress syndrome lungs.
    Owens RL; Hess DR; Malhotra A; Venegas JG; Harris RS
    Crit Care Med; 2008 Nov; 36(11):2980-5. PubMed ID: 18824918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a catecholamine-induced increase in cardiac output on lung injury after experimental unilateral pulmonary acid instillation.
    Schreiber T; Hueter L; Gaser E; Schmidt B; Schwarzkopf K; Karzai W
    Crit Care Med; 2007 Jul; 35(7):1741-8. PubMed ID: 17522573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of propofol on acute lung injury induced by oleic acid in conscious rats.
    Chen HI; Hsieh NK; Kao SJ; Su CF
    Crit Care Med; 2008 Apr; 36(4):1214-21. PubMed ID: 18379248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation.
    Nold JL; Meyers PA; Worwa CT; Goertz RH; Huseby K; Schauer G; Mammel MC
    Neonatology; 2007; 92(1):19-25. PubMed ID: 17596733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible nitric oxide synthase expressions in different lung injury models and the protective effect of aminoguanidine.
    Yeh DY; Feng NH; Chen CF; Lin HI; Wang D
    Transplant Proc; 2008 Sep; 40(7):2178-81. PubMed ID: 18790185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gadolinium chloride on slowly adapting and rapidly adapting receptors of the rabbit lung.
    Ma AA; Ravi K; Bravo EM; Kappagoda CT
    Respir Physiol Neurobiol; 2004 Jul; 141(2):125-35. PubMed ID: 15239963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcitonin gene-related peptide mediates acid-induced lung injury in mice.
    Aoki-Nagase T; Nagase T; Oh-Hashi Y; Kurihara Y; Yamaguchi Y; Yamamoto H; Nagata T; Kurihara H; Ouchi Y
    Respirology; 2007 Nov; 12(6):807-13. PubMed ID: 17986107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury.
    Hua YM; Lien SH; Liu TY; Lee CM; Yuh YS
    Pediatr Pulmonol; 2008 Apr; 43(4):371-80. PubMed ID: 18293413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.