These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17392413)

  • 1. Humidity-dependent cold cells on the antenna of the stick insect.
    Tichy H
    J Neurophysiol; 2007 Jun; 97(6):3851-8. PubMed ID: 17392413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect Carausius morosus.
    Altner H; Tichy H; Altner I
    Cell Tissue Res; 1978 Jul; 191(2):287-304. PubMed ID: 679268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External structure of the sensillum capitulum, a hygro- and thermoreceptive sensillum of the cockroach, Periplaneta americana.
    Tominaga Y; Yokohari F
    Cell Tissue Res; 1982; 226(2):309-18. PubMed ID: 7127431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evaporative function of cockroach hygroreceptors.
    Tichy H; Kallina W
    PLoS One; 2013; 8(1):e53998. PubMed ID: 23342058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation as a mechanism for gain control in an insect thermoreceptor.
    Tichy H; Fischer H; Gingl E
    J Neurophysiol; 2008 Oct; 100(4):2137-44. PubMed ID: 18684906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect hygroreceptor responses to continuous changes in humidity and air pressure.
    Tichy H; Kallina W
    J Neurophysiol; 2010 Jun; 103(6):3274-86. PubMed ID: 20375249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central projections of the antennal cold receptor neurons and hygroreceptor neurons of the cockroach Periplaneta americana.
    Nishikawa M; Yokohari F; Ishibashi T
    J Comp Neurol; 1995 Oct; 361(1):165-76. PubMed ID: 8550877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee, Apis mellifera L.
    Yokohari F
    Cell Tissue Res; 1983; 233(2):355-65. PubMed ID: 6616572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Central and peripheral thermoreceptors. Comparative analysis of effects of the long-term adaptation to cold and noradrenaline].
    Kozyreva TV
    Ross Fiziol Zh Im I M Sechenova; 2005 Dec; 91(12):1492-503. PubMed ID: 16493930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antennal hygroreceptors of the honey bee, Apis mellifera L.
    Yokohari F; Tominaga Y; Tateda H
    Cell Tissue Res; 1982; 226(1):63-73. PubMed ID: 7127426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional unit consisting of an eversible gland with neurosecretory innervation and a proprioreceptor derived from a complex sensillum in an insect.
    Altner H; Thies G
    Z Zellforsch Mikrosk Anat; 1973 Dec; 145(4):503-19. PubMed ID: 4774983
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of side cooling on temperature, humidity and water recycling efficiency in a culture vessel for a space experiment--results of ground experiment.
    Tani A; Seino K
    Seibutsu Kankyo Chosetsu; 2000 Jun; 38(2):79-87. PubMed ID: 12371436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bursty spike trains of antennal thermo- and bimodal hygro-thermoreceptor neurons encode noxious heat in elaterid beetles.
    Nurme K; Merivee E; Must A; Di Giulio A; Muzzi M; Williams I; Mänd M
    J Therm Biol; 2018 Feb; 72():101-117. PubMed ID: 29496003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease.
    Hirata H; Meng ID
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3969-76. PubMed ID: 20335617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological infrared imaging and sensing.
    Campbell AL; Naik RR; Sowards L; Stone MO
    Micron; 2002; 33(2):211-25. PubMed ID: 11567889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laryngeal cold receptors.
    Sant'Ambrogio G; Mathew OP; Sant'Ambrogio FB; Fisher JT
    Respir Physiol; 1985 Jan; 59(1):35-44. PubMed ID: 3975501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature signaling underlying thermotaxis and cold tolerance in
    Takeishi A; Takagaki N; Kuhara A
    J Neurogenet; 2020; 34(3-4):351-362. PubMed ID: 32316810
    [No Abstract]   [Full Text] [Related]  

  • 18. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running.
    Valenza A; Bianco A; Filingeri D
    J Physiol; 2019 Jul; 597(13):3315-3332. PubMed ID: 31093981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of minute temperature transients by thermosensitive neurons in ants.
    Ruchty M; Roces F; Kleineidam CJ
    J Neurophysiol; 2010 Sep; 104(3):1249-56. PubMed ID: 20573968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of evaporation by cold and humidity receptors in caterpillars.
    Dethier VG; Schoonhoven LM
    J Insect Physiol; 1968 Aug; 14(8):1049-54. PubMed ID: 5761657
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.