These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17392414)

  • 61. Visual receptive field properties of excitatory neurons in the substantia nigra.
    Nagy A; Eördegh G; Norita M; Benedek G
    Neuroscience; 2005; 130(2):513-8. PubMed ID: 15664707
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex.
    Constantin AG; Wang H; Martinez-Trujillo JC; Crawford JD
    J Neurophysiol; 2007 Aug; 98(2):696-709. PubMed ID: 17553952
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Control of visually guided saccades in multiple sclerosis: Disruption to higher-order processes.
    Fielding J; Kilpatrick T; Millist L; White O
    Neuropsychologia; 2009 Jun; 47(7):1647-53. PubMed ID: 19397859
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field.
    Lawrence BM; White RL; Snyder LH
    J Neurophysiol; 2005 Aug; 94(2):1498-508. PubMed ID: 15843482
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The planning of a sequence of saccades in pro- and antisaccade tasks: influence of visual integration time and concurrent motor processing.
    Lavergne L; Vergilino-Perez D; Collins T; Orriols E; Doré-Mazars K
    Brain Res; 2008 Dec; 1245():82-95. PubMed ID: 18929544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibition of visual discrimination during a memory-guided saccade task.
    Ostendorf F; Finke C; Ploner CJ
    J Neurophysiol; 2004 Jul; 92(1):660-4. PubMed ID: 14973318
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transfer of adaptation from visually guided saccades to averaging saccades elicited by double visual targets.
    Alahyane N; Koene A; Pélisson D
    Eur J Neurosci; 2004 Aug; 20(3):827-36. PubMed ID: 15255993
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields.
    Tehovnik EJ; Slocum WM; Schiller PH
    Eur J Neurosci; 2005 Nov; 22(10):2635-43. PubMed ID: 16307605
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single-pulse transcranial magnetic stimulation over the frontal eye field can facilitate and inhibit saccade triggering.
    Nyffeler T; Bucher O; Pflugshaupt T; Von Wartburg R; Wurtz P; Hess CW; Müri RM
    Eur J Neurosci; 2004 Oct; 20(8):2240-4. PubMed ID: 15450104
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention.
    Ignashchenkova A; Dicke PW; Haarmeier T; Thier P
    Nat Neurosci; 2004 Jan; 7(1):56-64. PubMed ID: 14699418
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Commissural mirror-symmetric excitation and reciprocal inhibition between the two superior colliculi and their roles in vertical and horizontal eye movements.
    Takahashi M; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2007 Nov; 98(5):2664-82. PubMed ID: 17728384
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Impairment of sequences of memory-guided saccades after supplementary motor area lesions.
    Gaymard B; Pierrot-Deseilligny C; Rivaud S
    Ann Neurol; 1990 Nov; 28(5):622-6. PubMed ID: 2260848
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement.
    Hamker FH
    Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Activity changes in monkey superior colliculus during saccade adaptation.
    Takeichi N; Kaneko CR; Fuchs AF
    J Neurophysiol; 2007 Jun; 97(6):4096-107. PubMed ID: 17442764
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of low-frequency stimulation of the superior colliculus on spontaneous and visually guided saccades.
    Glimcher PW; Sparks DL
    J Neurophysiol; 1993 Mar; 69(3):953-64. PubMed ID: 8463820
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Basal ganglia mechanisms of reward-oriented eye movement.
    Hikosaka O
    Ann N Y Acad Sci; 2007 May; 1104():229-49. PubMed ID: 17360800
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Event-related power modulations of brain activity preceding visually guided saccades.
    Brignani D; Maioli C; Maria Rossini P; Miniussi C
    Brain Res; 2007 Mar; 1136(1):122-31. PubMed ID: 17196943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-Hertz transcranial magnetic stimulation over the frontal eye field induces lasting inhibition of saccade triggering.
    Nyffeler T; Wurtz P; Pflugshaupt T; von Wartburg R; Luthi M; Hess CW; Muri RM
    Neuroreport; 2006 Feb; 17(3):273-5. PubMed ID: 16462596
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Participation of the primate presupplementary motor area in sequencing multiple saccades.
    Isoda M; Tanji J
    J Neurophysiol; 2004 Jul; 92(1):653-9. PubMed ID: 14985413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.