These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17392466)

  • 1. Control of hair cell excitability by vestibular primary sensory neurons.
    Brugeaud A; Travo C; Demêmes D; Lenoir M; Llorens J; Puel JL; Chabbert C
    J Neurosci; 2007 Mar; 27(13):3503-11. PubMed ID: 17392466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development.
    Chabbert C; Mechaly I; Sieso V; Giraud P; Brugeaud A; Lehouelleur J; Couraud F; Valmier J; Sans A
    J Physiol; 2003 Nov; 553(Pt 1):113-23. PubMed ID: 12963806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in two voltage-dependent sodium currents in utricular hair cells.
    Wooltorton JR; Gaboyard S; Hurley KM; Price SD; Garcia JL; Zhong M; Lysakowski A; Eatock RA
    J Neurophysiol; 2007 Feb; 97(2):1684-704. PubMed ID: 17065252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs.
    Haden M; Einarsson R; Yazejian B
    Neuroscience; 2013 Sep; 248():79-87. PubMed ID: 23747350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia.
    Mercado F; López IA; Acuna D; Vega R; Soto E
    J Neurophysiol; 2006 Sep; 96(3):1615-24. PubMed ID: 16790596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle.
    Lennan GW; Steinacker A; Lehouelleur J; Sans A
    Pflugers Arch; 1999 Jun; 438(1):40-6. PubMed ID: 10370085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypergravity affects the developmental expression of voltage-gated sodium current in utricular hair cells.
    Brugeaud A; Gaboyard-Niay S; Puel JL; Chabbert C
    Neuroreport; 2006 Nov; 17(16):1697-701. PubMed ID: 17047456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity.
    Holmes WR; Huwe JA; Williams B; Rowe MH; Peterson EH
    J Neurophysiol; 2017 May; 117(5):1969-1986. PubMed ID: 28202575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular diversity of voltage-gated sodium channel alpha subunits expressed in neuronal and non-neuronal excitable cells.
    Mechaly I; Scamps F; Chabbert C; Sans A; Valmier J
    Neuroscience; 2005; 130(2):389-96. PubMed ID: 15664695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.
    Kawamoto K; Izumikawa M; Beyer LA; Atkin GM; Raphael Y
    Hear Res; 2009 Jan; 247(1):17-26. PubMed ID: 18809482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular immunolocalization of NMDA receptor subunit NR1, 2A, 2B in the rat vestibular periphery.
    Ishiyama G; Lopez I; Williamson R; Acuna D; Ishiyama A
    Brain Res; 2002 May; 935(1-2):16-23. PubMed ID: 12062468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of cytochrome oxidase in hair cells of the teleost utricle.
    Saidel WM; Crowder JA
    Hear Res; 1997 Jul; 109(1-2):63-77. PubMed ID: 9259236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative biology of the amniote vestibular utricle.
    Lipovsek M
    Hear Res; 2024 Jul; 448():109035. PubMed ID: 38763033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms.
    Gaboyard-Niay S; Travo C; Saleur A; Broussy A; Brugeaud A; Chabbert C
    Dis Model Mech; 2016 Oct; 9(10):1181-1192. PubMed ID: 27483344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer characteristics of the hair cell's afferent synapse.
    Keen EC; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5537-42. PubMed ID: 16567618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hair cells in mammalian utricles.
    Eatock RA; Rüsch A; Lysakowski A; Saeki M
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):172-81. PubMed ID: 9743073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells.
    Wang T; Niwa M; Sayyid ZN; Hosseini DK; Pham N; Jones SM; Ricci AJ; Cheng AG
    PLoS Biol; 2019 Jul; 17(7):e3000326. PubMed ID: 31260439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphophysiological studies of the mammalian vestibular labyrinth.
    Goldberg JM; Baird RA; Fernández C
    Prog Clin Biol Res; 1985; 176():231-45. PubMed ID: 2987974
    [No Abstract]   [Full Text] [Related]  

  • 19. Autocorrelation analysis of hair bundle structure in the utricle.
    Rowe MH; Peterson EH
    J Neurophysiol; 2006 Nov; 96(5):2653-69. PubMed ID: 16899638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic ribbon plasticity, ribbon size and potential regulatory mechanisms in utricular and saccular maculae.
    Ross MD; Varelas J
    J Vestib Res; 2005; 15(1):17-30. PubMed ID: 15908737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.