These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17393064)

  • 1. New insights into the structures and functions of human monoamine oxidases A and B.
    Edmondson DE; DeColibus L; Binda C; Li M; Mattevi A
    J Neural Transm (Vienna); 2007; 114(6):703-5. PubMed ID: 17393064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B.
    De Colibus L; Li M; Binda C; Lustig A; Edmondson DE; Mattevi A
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12684-9. PubMed ID: 16129825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do monomeric vs dimeric forms of MAO-A make a difference? A direct comparison of the catalytic properties of rat and human MAO-A's.
    Wang J; Edmondson DE
    J Neural Transm (Vienna); 2007; 114(6):721-4. PubMed ID: 17401534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural properties of human monoamine oxidases A and B.
    Binda C; Mattevi A; Edmondson DE
    Int Rev Neurobiol; 2011; 100():1-11. PubMed ID: 21971000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic and inhibitor binding properties of zebrafish monoamine oxidase (zMAO): comparisons with human MAO A and MAO B.
    Aldeco M; Arslan BK; Edmondson DE
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Jun; 159(2):78-83. PubMed ID: 21354322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rat monoamine oxidase B expressed in Escherichia coli has a covalently-bound FAD.
    Hirashiki I; Ogata F; Ito A
    Biochem Mol Biol Int; 1995 Sep; 37(1):39-44. PubMed ID: 8653086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level expression of human liver monoamine oxidase B in Pichia pastoris.
    Newton-Vinson P; Hubalek F; Edmondson DE
    Protein Expr Purif; 2000 Nov; 20(2):334-45. PubMed ID: 11049757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW; Lewis DA; Zhou BP; Abell CW
    Arch Biochem Biophys; 1995 Jan; 316(1):385-91. PubMed ID: 7840641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of monoamine oxidases A and B.
    Abell CW; Kwan SW
    Prog Nucleic Acid Res Mol Biol; 2001; 65():129-56. PubMed ID: 11008487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ; Kwan SW; Abell CW
    Biochemistry; 1998 Sep; 37(35):12360-6. PubMed ID: 9724550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B.
    Rebrin I; Geha RM; Chen K; Shih JC
    J Biol Chem; 2001 Aug; 276(31):29499-506. PubMed ID: 11371556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP; Wu B; Kwan SW; Abell CW
    J Biol Chem; 1998 Jun; 273(24):14862-8. PubMed ID: 9614088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the structural basis of the selective inhibition of monoamine oxidase A by dicarbonitrile aminoheterocycles: role of Asn181 and Ile335 validated by spectroscopic and computational studies.
    Juárez-Jiménez J; Mendes E; Galdeano C; Martins C; Silva DB; Marco-Contelles J; do Carmo Carreiras M; Luque FJ; Ramsay RR
    Biochim Biophys Acta; 2014 Feb; 1844(2):389-97. PubMed ID: 24247011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution.
    Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G
    J Mol Biol; 2008 Dec; 384(5):1218-31. PubMed ID: 18951902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characteristics of a single and novel form of carp (Cyprinus carpio) monoamine oxidase.
    Sugimoto H; Taguchi YD; Shibata K; Kinemuchi H
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Mar; 155(3):266-71. PubMed ID: 19932189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromone-2- and -3-carboxylic acids inhibit differently monoamine oxidases A and B.
    Alcaro S; Gaspar A; Ortuso F; Milhazes N; Orallo F; Uriarte E; Yáñez M; Borges F
    Bioorg Med Chem Lett; 2010 May; 20(9):2709-12. PubMed ID: 20382016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amine oxidases from Aspergillus niger: identification of a novel flavin-dependent enzyme.
    Schilling B; Lerch K
    Biochim Biophys Acta; 1995 Apr; 1243(3):529-37. PubMed ID: 7727530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The FAD binding sites of human liver monoamine oxidases A and B: investigation of the role of flavin ribityl side chain hydroxyl groups in the covalent flavinylation reaction and catalytic activities.
    Miller JR; Guan N; Hubalek F; Edmondson DE
    Biochim Biophys Acta; 2000 Jan; 1476(1):27-32. PubMed ID: 10606764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.