BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 17393489)

  • 1. Multi-dimensional fluorescence lifetime and FRET measurements.
    Biskup C; Zimmer T; Kelbauskas L; Hoffmann B; Klöcker N; Becker W; Bergmann A; Benndorf K
    Microsc Res Tech; 2007 May; 70(5):442-51. PubMed ID: 17393489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy.
    Kenworthy AK
    Methods; 2001 Jul; 24(3):289-96. PubMed ID: 11403577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM; Ryder AG
    Biophys Chem; 2010 Nov; 152(1-3):55-64. PubMed ID: 20724058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera.
    Biskup C; Zimmer T; Benndorf K
    Nat Biotechnol; 2004 Feb; 22(2):220-4. PubMed ID: 14730318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray analysis of protein-protein interactions based on FRET using subnanosecond-resolved fluorescence lifetime imaging.
    Nagl S; Bauer R; Sauer U; Preininger C; Bogner U; Schaeferling M
    Biosens Bioelectron; 2008 Nov; 24(3):397-402. PubMed ID: 18538558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.
    Melnikov SM; Yeow EK; Uji-i H; Cotlet M; Müllen K; De Schryver FC; Enderlein J; Hofkens J
    J Phys Chem B; 2007 Feb; 111(4):708-19. PubMed ID: 17249814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions.
    Lee JD; Huang PC; Lin YC; Kao LS; Huang CC; Kao FJ; Lin CC; Yang DM
    Microsc Microanal; 2008 Dec; 14(6):507-18. PubMed ID: 18986604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved fluorescence microscopy.
    Suhling K; French PM; Phillips D
    Photochem Photobiol Sci; 2005 Jan; 4(1):13-22. PubMed ID: 15616687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging FRET standards by steady-state fluorescence and lifetime methods.
    Domingo B; Sabariegos R; Picazo F; Llopis J
    Microsc Res Tech; 2007 Dec; 70(12):1010-21. PubMed ID: 17722057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions.
    Ramadass R; Becker D; Jendrach M; Bereiter-Hahn J
    Arch Biochem Biophys; 2007 Jul; 463(1):27-36. PubMed ID: 17374521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency.
    Chen YC; Clegg RM
    J Microsc; 2011 Oct; 244(1):21-37. PubMed ID: 21801176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon excitation fluorescence resonance energy transfer with small organic molecule as energy donor for bioassay.
    Liu L; Wei G; Liu Z; He Z; Xiao S; Wang Q
    Bioconjug Chem; 2008 Feb; 19(2):574-9. PubMed ID: 18197607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.
    Chen Y; Periasamy A
    Microsc Res Tech; 2004 Jan; 63(1):72-80. PubMed ID: 14677136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.