These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17394054)

  • 1. Application of asymmetric model in analysis of fluorescence spectra of biologically important molecules.
    Kalauzi A; Mutavdzić D; Djikanović D; Radotić K; Jeremić M
    J Fluoresc; 2007 May; 17(3):319-29. PubMed ID: 17394054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules.
    Djikanović D; Kalauzi A; Jeremić M; Mićić M; Radotić K
    Colloids Surf B Biointerfaces; 2007 Feb; 54(2):188-92. PubMed ID: 17134884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Component analysis of the fluorescence spectra of a lignin model compound.
    Radotić K; Kalauzi A; Djikanović D; Jeremić M; Leblanc RM; Cerović ZG
    J Photochem Photobiol B; 2006 Apr; 83(1):1-10. PubMed ID: 16406801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Tryptophan and Tyrosine in the Presence of Other Bioactive Molecules Using Generalized Rank Annihilation Method on Excitation-emission Fluorescence Spectroscopic Data Sets.
    Kumar K
    J Fluoresc; 2020 Jul; 30(4):787-792. PubMed ID: 32419036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence spectra decomposition by asymmetric functions: Laurdan spectrum revisited.
    Bacalum M; Zorilă B; Radu M
    Anal Biochem; 2013 Sep; 440(2):123-9. PubMed ID: 23747535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms.
    Burstein EA; Abornev SM; Reshetnyak YK
    Biophys J; 2001 Sep; 81(3):1699-709. PubMed ID: 11509382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy.
    Mach H; Middaugh CR
    Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins.
    Reshetnyak YK; Burstein EA
    Biophys J; 2001 Sep; 81(3):1710-34. PubMed ID: 11509383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hitherto unrecognized fluorescence properties of coniferyl alcohol.
    Achyuthan KE; Adams PD; Datta S; Simmons BA; Singh AK
    Molecules; 2010 Mar; 15(3):1645-67. PubMed ID: 20336005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The component analysis of tryptophan fluorescence spectra of melittin during its oligomerization].
    Emel'ianenko VI; Grishchenko VM; Burshteĭn EA
    Biofizika; 2005; 50(4):623-30. PubMed ID: 16212052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra.
    Lakowicz JR; Jayaweera R; Szmacinski H; Wiczk W
    Photochem Photobiol; 1989 Oct; 50(4):541-6. PubMed ID: 2594838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption and fluorescence emission attributes of a fluorescent dye: 2,3,5,6-tetracyano-p-hydroquinone.
    Zahid M; Grampp G; Mansha A; Bhatti IA; Asim S
    J Fluoresc; 2013 Jul; 23(4):829-37. PubMed ID: 23525972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectroscopic survey of substituted indoles reveals consequences of a stabilized 1Lb transition.
    Meng X; Harricharran T; Juszczak LJ
    Photochem Photobiol; 2013; 89(1):40-50. PubMed ID: 22882557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone.
    Livingstone RA; Thompson JO; Iljina M; Donaldson RJ; Sussman BJ; Paterson MJ; Townsend D
    J Chem Phys; 2012 Nov; 137(18):184304. PubMed ID: 23163368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolvability of fluorescence lifetime distributions using phase fluorometry.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Apr; 51(4):587-96. PubMed ID: 3580485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement analysis of two radials with a common-origin point and its application.
    Liu Z; Yang J; Zhu W; Zhou S; Tan X
    Luminescence; 2017 Aug; 32(5):800-805. PubMed ID: 28124455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analytical description of electron-vibrational protein spectra].
    Permiakov EA; Deĭkus GIu
    Mol Biol (Mosk); 1995; 29(1):159-67. PubMed ID: 7723756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.