BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17394161)

  • 1. Synaptic organization of lobula plate tangential cells in Drosophila: gamma-aminobutyric acid receptors and chemical release sites.
    Raghu SV; Joesch M; Borst A; Reiff DF
    J Comp Neurol; 2007 Jun; 502(4):598-610. PubMed ID: 17394161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic organization of lobula plate tangential cells in Drosophila: Dalpha7 cholinergic receptors.
    Raghu SV; Joesch M; Sigrist SJ; Borst A; Reiff DF
    J Neurogenet; 2009; 23(1-2):200-9. PubMed ID: 19306209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice.
    Garin N; Hornung JP; Escher G
    J Comp Neurol; 2002 Jun; 447(3):210-7. PubMed ID: 11984816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: a light and electron microscopic study.
    Barbaresi P
    J Neurocytol; 2005 Dec; 34(6):471-87. PubMed ID: 16902767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius.
    Yoshioka M; Okada T; Inoue K; Kawai Y
    Neurosci Res; 2006 Jul; 55(3):300-15. PubMed ID: 16716422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina.
    Zhang J; Zhang AJ; Wu SM
    J Comp Neurol; 2006 Nov; 499(3):432-41. PubMed ID: 16998928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat.
    Avwenagha O; Bird MM; Lieberman AR; Yan Q; Campbell G
    Neuroscience; 2006 Jul; 140(3):913-28. PubMed ID: 16626872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical neuroanatomy of the fly's movement detection pathway.
    Sinakevitch I; Strausfeld NJ
    J Comp Neurol; 2004 Jan; 468(1):6-23. PubMed ID: 14648688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.
    Higgins CM; Douglass JK; Strausfeld NJ
    Vis Neurosci; 2004; 21(4):567-86. PubMed ID: 15579222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster.
    Joesch M; Plett J; Borst A; Reiff DF
    Curr Biol; 2008 Mar; 18(5):368-74. PubMed ID: 18328703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and postsynaptic GABA receptors at reciprocal dendrodendritic synapses in the olfactory bulb.
    Panzanelli P; Homanics GE; Ottersen OP; Fritschy JM; Sassoè-Pognetto M
    Eur J Neurosci; 2004 Dec; 20(11):2945-52. PubMed ID: 15579148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there more to GABA than synaptic inhibition?
    Owens DF; Kriegstein AR
    Nat Rev Neurosci; 2002 Sep; 3(9):715-27. PubMed ID: 12209120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain.
    Schnell B; Joesch M; Forstner F; Raghu SV; Otsuna H; Ito K; Borst A; Reiff DF
    J Neurophysiol; 2010 Mar; 103(3):1646-57. PubMed ID: 20089816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and subcellular localization of the GABA(B) receptor 1a/b subunit in the rat periaqueductal gray matter.
    Barbaresi P
    J Comp Neurol; 2007 Dec; 505(5):478-92. PubMed ID: 17924569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Despite GABAergic neurotransmission, GABAergic innervation does not compensate for the defect in glycine receptor postsynaptic aggregation in spastic mice.
    Muller E; Le Corronc H; Scain AL; Triller A; Legendre P
    Eur J Neurosci; 2008 May; 27(10):2529-41. PubMed ID: 18445051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn.
    Fukushima T; Ohtsubo T; Tsuda M; Yanagawa Y; Hori Y
    J Neurophysiol; 2009 Sep; 102(3):1459-71. PubMed ID: 19369358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus.
    Rubio ME; Juiz JM
    J Comp Neurol; 2004 Sep; 477(3):253-72. PubMed ID: 15305363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways.
    Strausfeld NJ; Kong A; Milde JJ; Gilbert C; Ramaiah L
    J Comp Neurol; 1995 Oct; 361(2):298-320. PubMed ID: 8543664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats.
    Bardoni R; Ghirri A; Salio C; Prandini M; Merighi A
    Dev Neurobiol; 2007 Jun; 67(7):960-75. PubMed ID: 17506495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic circuitry in the retinorecipient layers of the optic tectum of the lamprey (Lampetra fluviatilis). A combined hodological, GABA and glutamate immunocytochemical study.
    Repérant J; Ward R; Médina M; Kenigfest NB; Rio JP; Miceli D; Jay B
    Brain Struct Funct; 2009 Sep; 213(4-5):395-422. PubMed ID: 19252925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.