These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17394384)

  • 1. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells.
    Yoon SJ; Park KS; Kim MS; Rhee JM; Khang G; Lee HB
    Tissue Eng; 2007 May; 13(5):1125-33. PubMed ID: 17394384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bone engineering in a rabbit femur.
    Fialkov JA; Holy CE; Shoichet MS; Davies JE
    J Craniofac Surg; 2003 May; 14(3):324-32. PubMed ID: 12826803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.
    Ren T; Ren J; Jia X; Pan K
    J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition.
    Li H; Liao H; Bao C; Xiao Y; Wang Q
    AAPS PharmSciTech; 2017 Feb; 18(2):529-538. PubMed ID: 27126006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof.
    Huang Y; Ren J; Ren T; Gu S; Tan Q; Zhang L; Lv K; Pan K; Jiang X
    J Biomed Mater Res A; 2010 Dec; 95(4):993-1003. PubMed ID: 20872750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells.
    Liang H; Li X; Shimer AL; Balian G; Shen FH
    Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds.
    Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX
    Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenesis and healing with non-shrinking, fast degradeable PLGA/CaP scaffolds in critical-sized defects in the rabbit femur with or without osteogenically induced mesenchymal stem cells.
    Endres S; Hiebl B; Hägele J; Beltzer C; Fuhrmann R; Jäger V; Almeida M; Costa E; Santos C; Traupe H; Jung EM; Prantl L; Jung F; Wilke A; Franke RP
    Clin Hemorheol Microcirc; 2011; 48(1):29-40. PubMed ID: 21876232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local BMP-7 release from a PLGA scaffolding-matrix for the repair of osteochondral defects in rabbits.
    Jung MR; Shim IK; Chung HJ; Lee HR; Park YJ; Lee MC; Yang YI; Do SH; Lee SJ
    J Control Release; 2012 Sep; 162(3):485-91. PubMed ID: 22902517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold.
    Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR
    Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon.
    Ouyang HW; Goh JC; Thambyah A; Teoh SH; Lee EH
    Tissue Eng; 2003 Jun; 9(3):431-9. PubMed ID: 12857411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect.
    Shim JH; Kim SE; Park JY; Kundu J; Kim SW; Kang SS; Cho DW
    Tissue Eng Part A; 2014 Jul; 20(13-14):1980-92. PubMed ID: 24517081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold.
    Huang W; Carlsen B; Wulur I; Rudkin G; Ishida K; Wu B; Yamaguchi DT; Miller TA
    Exp Cell Res; 2004 Oct; 299(2):325-34. PubMed ID: 15350532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.
    Chang NJ; Lam CF; Lin CC; Chen WL; Li CF; Lin YT; Yeh ML
    Osteoarthritis Cartilage; 2013 Oct; 21(10):1613-22. PubMed ID: 23927932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Repair of the radial defect of rabbit by polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology].
    Sun L; Hu YY; Xiong Z; Wang WM; Pan Y
    Zhonghua Wai Ke Za Zhi; 2005 Apr; 43(8):535-9. PubMed ID: 15938915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The experimental study of biomimetic artificial cartilage fabrication in vitro and ectopic chondrogenesis in vivo].
    Ma X; Hu Y; Yan Y; Xiong Z; Lü R; Wang J; Xu X; Li D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):795-9. PubMed ID: 17002110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.
    Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.