These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia. Gore A; Gauthier AG; Lin M; Patel V; Thomas DD; Ashby CR; Mantell LL Biochem Pharmacol; 2020 Jun; 176():113817. PubMed ID: 31972169 [TBL] [Abstract][Full Text] [Related]
4. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Sitapara RA; Gauthier AG; Patel VS; Lin M; Zur M; Ashby CR; Mantell LL Mol Med; 2020 Oct; 26(1):98. PubMed ID: 33126860 [TBL] [Abstract][Full Text] [Related]
5. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Sitapara RA; Antoine DJ; Sharma L; Patel VS; Ashby CR; Gorasiya S; Yang H; Zur M; Mantell LL Mol Med; 2014 Jun; 20(1):238-47. PubMed ID: 24664237 [TBL] [Abstract][Full Text] [Related]
6. Hyperoxia impairs antibacterial function of macrophages through effects on actin. O'Reilly PJ; Hickman-Davis JM; Davis IC; Matalon S Am J Respir Cell Mol Biol; 2003 Apr; 28(4):443-50. PubMed ID: 12654633 [TBL] [Abstract][Full Text] [Related]
7. High Mobility Group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Patel VS; Sitapara RA; Gore A; Phan B; Sharma L; Sampat V; Li JH; Yang H; Chavan SS; Wang H; Tracey KJ; Mantell LL Am J Respir Cell Mol Biol; 2013 Mar; 48(3):280-7. PubMed ID: 23087050 [TBL] [Abstract][Full Text] [Related]
8. Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. Patel V; Dial K; Wu J; Gauthier AG; Wu W; Lin M; Espey MG; Thomas DD; Ashby CR; Mantell LL Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024151 [TBL] [Abstract][Full Text] [Related]
9. Therapeutic characteristics of alveolar-like macrophages in mouse models of hyperoxia and LPS-induced lung inflammation. Litman K; Bouch S; Litvack ML; Post M Am J Physiol Lung Cell Mol Physiol; 2024 Sep; 327(3):L269-L281. PubMed ID: 38887793 [TBL] [Abstract][Full Text] [Related]
10. Antioxidants improve antibacterial function in hyperoxia-exposed macrophages. Arita Y; Kazzaz JA; Joseph A; Koo HC; Li Y; Davis JM Free Radic Biol Med; 2007 May; 42(10):1517-23. PubMed ID: 17448898 [TBL] [Abstract][Full Text] [Related]
11. [Effects of U74389G on pulmonary macrophage influx and lung development in 95% O2 exposed newborn rats]. Luo XP; Liao LJ; Li YX; Liu Y; Liu WJ; Tanswell AK; Ning Q Zhonghua Er Ke Za Zhi; 2004 Feb; 42(2):134-8. PubMed ID: 15059491 [TBL] [Abstract][Full Text] [Related]
12. Modulation of macrophage function for defence of the lung against Pseudomonas aeruginosa. Speert DP; Wong SY; Macdonald M; Sargeant R Behring Inst Mitt; 1997 Feb; (98):274-82. PubMed ID: 9382751 [TBL] [Abstract][Full Text] [Related]
13. The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-κB-mediated release of high-mobility group box-1. Wang M; Gorasiya S; Antoine DJ; Sitapara RA; Wu W; Sharma L; Yang H; Ashby CR; Vasudevan D; Zur M; Thomas DD; Mantell LL Am J Respir Cell Mol Biol; 2015 Feb; 52(2):171-82. PubMed ID: 24992505 [TBL] [Abstract][Full Text] [Related]
14. Protein kinase C agonists enhance phagocytosis of P. aeruginosa by murine alveolar macrophages. Heale JP; Speert DP J Leukoc Biol; 2001 Jan; 69(1):158-60. PubMed ID: 11200060 [TBL] [Abstract][Full Text] [Related]
15. Impairment of phagocytosis by moderate hyperoxia (40 to 60 per cent oxygen) in lung macrophages. Raffin TA; Simon LM; Braun D; Theodore J; Robin ED Lab Invest; 1980 Jun; 42(6):622-6. PubMed ID: 7392568 [TBL] [Abstract][Full Text] [Related]
16. Ascorbic Acid Attenuates Hyperoxia-Compromised Host Defense against Pulmonary Bacterial Infection. Patel VS; Sampat V; Espey MG; Sitapara R; Wang H; Yang X; Ashby CR; Thomas DD; Mantell LL Am J Respir Cell Mol Biol; 2016 Oct; 55(4):511-520. PubMed ID: 27120084 [TBL] [Abstract][Full Text] [Related]
17. Pseudomonas aeruginosa promotes autophagy to suppress macrophage-mediated bacterial eradication. Wu Y; Li D; Wang Y; Chen K; Yang K; Huang X; Zhang Y; Wu M Int Immunopharmacol; 2016 Sep; 38():214-22. PubMed ID: 27295610 [TBL] [Abstract][Full Text] [Related]
18. Hyperoxic suppression of Fc-gamma receptor-mediated phagocytosis by isolated murine pulmonary macrophages. Crowell RE; Hallin G; Heaphy E; Mold C Am J Respir Cell Mol Biol; 1995 Feb; 12(2):190-5. PubMed ID: 7865216 [TBL] [Abstract][Full Text] [Related]
19. The Positive Allosteric Modulation of alpha7-Nicotinic Cholinergic Receptors by GAT107 Increases Bacterial Lung Clearance in Hyperoxic Mice by Decreasing Oxidative Stress in Macrophages. Gauthier AG; Wu J; Lin M; Sitapara R; Kulkarni A; Thakur GA; Schmidt EE; Perron JC; Ashby CR; Mantell LL Antioxidants (Basel); 2021 Jan; 10(1):. PubMed ID: 33477969 [TBL] [Abstract][Full Text] [Related]
20. Hyperoxia and prolongation of aminoglycoside-induced postantibiotic effect in Pseudomonas aeruginosa: role of reactive oxygen species. Park MK; Myers RA; Marzella L Antimicrob Agents Chemother; 1993 Jan; 37(1):120-2. PubMed ID: 8431008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]