BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17395152)

  • 1. Modulation of succinate transport in Hep G2 cell line by PKC.
    Srisawang P; Chatsudthipong A; Chatsudthipong V
    Biochim Biophys Acta; 2007 Jun; 1768(6):1378-88. PubMed ID: 17395152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.
    Weerachayaphorn J; Pajor AM
    Biochim Biophys Acta; 2008 Apr; 1778(4):1051-9. PubMed ID: 18194662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transport properties of the human renal Na(+)- dicarboxylate cotransporter under voltage-clamp conditions.
    Yao X; Pajor AM
    Am J Physiol Renal Physiol; 2000 Jul; 279(1):F54-64. PubMed ID: 10894787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C.
    Hagos Y; Burckhardt BC; Larsen A; Mathys C; Gronow T; Bahn A; Wolff NA; Burckhardt G; Steffgen J
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F86-93. PubMed ID: 13129854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions.
    Burckhardt BC; Lorenz J; Kobbe C; Burckhardt G
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F792-9. PubMed ID: 15561973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1.
    Pajor AM; Sun N
    Am J Physiol; 1996 Nov; 271(5 Pt 2):F1093-9. PubMed ID: 8946005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C-mediated regulation of the renal Na(+)/dicarboxylate cotransporter, NaDC-1.
    Pajor AM; Sun N
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):223-30. PubMed ID: 10446305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter.
    Bai XY; Chen X; Sun AQ; Feng Z; Hou K; Fu B
    FASEB J; 2007 Aug; 21(10):2409-17. PubMed ID: 17426067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter.
    Kahn ES; Pajor AM
    Biochemistry; 1999 May; 38(19):6151-6. PubMed ID: 10320342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.
    Knauf F; Mohebbi N; Teichert C; Herold D; Rogina B; Helfand S; Gollasch M; Luft FC; Aronson PS
    Biochem J; 2006 Jul; 397(1):25-9. PubMed ID: 16608441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of intercellular adhesion molecule-1 by tumor necrosis factor-alpha through the 55-kDa receptor is dependent on protein kinase C in human retinal pigment epithelial cells.
    Sippy BD; Hofman FM; Wright AD; Wang JL; Gopalakrishna R; Gundimeda U; He S; Ryan SJ; Hinton DR
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):597-606. PubMed ID: 8595959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of the calcium-regulated citrate transport process in proximal tubule cells.
    Hering-Smith KS; Mao W; Schiro FR; Coleman-Barnett J; Pajor AM; Hamm LL
    Urolithiasis; 2014 Jun; 42(3):209-19. PubMed ID: 24652587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells.
    Pajor AM; Valmonte HG
    Pflugers Arch; 1996 Feb; 431(4):645-51. PubMed ID: 8596711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.
    Schlessinger A; Sun NN; Colas C; Pajor AM
    J Biol Chem; 2014 Jun; 289(24):16998-7008. PubMed ID: 24808185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of Na+ -coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex.
    Wada M; Shimada A; Fujita T
    Brain Res; 2006 Apr; 1081(1):92-100. PubMed ID: 16516867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3.
    Kaufhold M; Schulz K; Breljak D; Gupta S; Henjakovic M; Krick W; Hagos Y; Sabolic I; Burckhardt BC; Burckhardt G
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1026-34. PubMed ID: 21865262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates.
    Inoue K; Fei YJ; Zhuang L; Gopal E; Miyauchi S; Ganapathy V
    Biochem J; 2004 Mar; 378(Pt 3):949-57. PubMed ID: 14656221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F704-11. PubMed ID: 20610529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.