These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17395196)
21. A secretory PLA2 associated with tobacco hornworm hemocyte membrane preparations acts in cellular immune reactions. Park Y; Aliza AR; Stanley D Arch Insect Biochem Physiol; 2005 Nov; 60(3):105-15. PubMed ID: 16235259 [TBL] [Abstract][Full Text] [Related]
22. The role of pilin protein of Xenorhabdus nematophila against immune defense reactions of insects. Darsouei R; Karimi J; Dunphy GB J Insect Physiol; 2017 Aug; 101():82-90. PubMed ID: 28716396 [TBL] [Abstract][Full Text] [Related]
23. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. Giannoulis P; Brooks CL; Dunphy GB; Niven DF; Mandato CA J Invertebr Pathol; 2008 Mar; 97(3):211-22. PubMed ID: 18048054 [TBL] [Abstract][Full Text] [Related]
24. Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge. Duvic B; Jouan V; Essa N; Girard PA; Pagès S; Abi Khattar Z; Volkoff NA; Givaudan A; Destoumieux-Garzon D; Escoubas JM J Insect Physiol; 2012 Jun; 58(6):881-8. PubMed ID: 22487443 [TBL] [Abstract][Full Text] [Related]
25. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Kim GS; Nalini M; Kim Y; Lee DW Arch Insect Biochem Physiol; 2009 Mar; 70(3):162-76. PubMed ID: 19140126 [TBL] [Abstract][Full Text] [Related]
26. A prophylactic role of a secretory PLA Vatanparast M; Ahmed S; Sajjadian SM; Kim Y Dev Comp Immunol; 2019 Jun; 95():108-117. PubMed ID: 30776421 [TBL] [Abstract][Full Text] [Related]
27. Phospholipase A₂ inhibitors in bacterial culture broth enhance pathogenicity of a fungus Nomuraea rileyi. Park JA; Kim Y J Microbiol; 2012 Aug; 50(4):644-51. PubMed ID: 22923114 [TBL] [Abstract][Full Text] [Related]
28. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. Huot L; Bigourdan A; Pagès S; Ogier JC; Girard PA; Nègre N; Duvic B Dev Comp Immunol; 2020 Jul; 108():103676. PubMed ID: 32184079 [TBL] [Abstract][Full Text] [Related]
29. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Seo S; Lee S; Hong Y; Kim Y Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611 [TBL] [Abstract][Full Text] [Related]
30. Nitric Oxide Mediates Insect Cellular Immunity via Phospholipase A2 Activation. Sadekuzzaman M; Stanley D; Kim Y J Innate Immun; 2018; 10(1):70-81. PubMed ID: 29035888 [TBL] [Abstract][Full Text] [Related]
31. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. Song CJ; Seo S; Shrestha S; Kim Y J Microbiol Biotechnol; 2011 Mar; 21(3):317-22. PubMed ID: 21464604 [TBL] [Abstract][Full Text] [Related]
32. In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of De Lerma Barbaro A; Gariboldi MB; Mastore M; Brivio MF; Giovannardi S Insects; 2019 Aug; 10(9):. PubMed ID: 31443446 [No Abstract] [Full Text] [Related]
34. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. Eom S; Park Y; Kim H; Kim Y J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195 [TBL] [Abstract][Full Text] [Related]
35. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
36. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. Park Y; Kim Y J Insect Physiol; 2000 Nov; 46(11):1469-1476. PubMed ID: 10891575 [TBL] [Abstract][Full Text] [Related]
37. Thromboxane Mobilizes Insect Blood Cells to Infection Foci. Roy MC; Nam K; Kim J; Stanley D; Kim Y Front Immunol; 2021; 12():791319. PubMed ID: 34987515 [TBL] [Abstract][Full Text] [Related]
38. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
39. Biochemical characteristics of immune-associated phospholipase A(2) and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. Shrestha S; Kim Y J Microbiol; 2009 Dec; 47(6):774-82. PubMed ID: 20127473 [TBL] [Abstract][Full Text] [Related]
40. Comparative analysis of phagocytosis of fungal cells by insect hemocytes versus horse neutrophils. Mazet I; Pendland J; Boucias D Dev Comp Immunol; 1994; 18(6):455-66. PubMed ID: 7768313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]