These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17395196)
41. Differential immunosuppression by inhibiting PLA Ahmed S; Kim Y J Invertebr Pathol; 2018 Sep; 157():136-146. PubMed ID: 29802883 [TBL] [Abstract][Full Text] [Related]
42. Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Rac1 signal in Spodoptera exigua. Kim GS; Kim Y J Insect Physiol; 2010 Jun; 56(6):559-66. PubMed ID: 19961854 [TBL] [Abstract][Full Text] [Related]
43. Innate hemocyte responses of Malacosoma disstria larvae (C. Insecta) to antigens are modulated by intracellular cyclic AMP. Gulii V; Dunphy GB; Mandato CA Dev Comp Immunol; 2009 Aug; 33(8):890-900. PubMed ID: 19454331 [TBL] [Abstract][Full Text] [Related]
44. Antagonistic effect of juvenile hormone on hemocyte-spreading behavior of Spodoptera exigua in response to an insect cytokine and its putative membrane action. Kim Y; Jung S; Madanagopal N J Insect Physiol; 2008 Jun; 54(6):909-15. PubMed ID: 18485359 [TBL] [Abstract][Full Text] [Related]
45. Xenorhabdus nematophila (enterobacteriacea) secretes a cation-selective calcium-independent porin which causes vacuolation of the rough endoplasmic reticulum and cell lysis. Ribeiro C; Vignes M; Brehélin M J Biol Chem; 2003 Jan; 278(5):3030-9. PubMed ID: 12441337 [TBL] [Abstract][Full Text] [Related]
47. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity. Kim Y; Kim K; Seo J; Shrestha S; Kim HH; Nalini M; Yi Y J Microbiol Biotechnol; 2009 Mar; 19(3):314-22. PubMed ID: 19349758 [TBL] [Abstract][Full Text] [Related]
48. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Aymeric JL; Givaudan A; Duvic B Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393 [TBL] [Abstract][Full Text] [Related]
49. The Global Transcription Factor Lrp Is both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity. Casanova-Torres ÁM; Shokal U; Morag N; Eleftherianos I; Goodrich-Blair H Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411220 [TBL] [Abstract][Full Text] [Related]
50. Blockades of phospholipase A(2) and platelet-activating factor receptors reduce the hemocyte phagocytosis in Rhodnius prolixus: in vitro experiments. Figueiredo MB; Garcia ES; Azambuja P J Insect Physiol; 2008 Feb; 54(2):344-50. PubMed ID: 18036540 [TBL] [Abstract][Full Text] [Related]
51. Role of a small G protein Ras in cellular immune response of the beet armyworm, Spodoptera exigua. Lee S; Shrestha S; Prasad SV; Kim Y J Insect Physiol; 2011 Mar; 57(3):356-62. PubMed ID: 21167168 [TBL] [Abstract][Full Text] [Related]
52. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. Ibrahim AM; Kim Y J Insect Physiol; 2006 Sep; 52(9):943-50. PubMed ID: 16872627 [TBL] [Abstract][Full Text] [Related]
53. Inhibition of Spodoptera frugiperda phenoloxidase activity by the products of the Xenorhabdus rhabduscin gene cluster. Eugenia Nuñez-Valdez M; Lanois A; Pagès S; Duvic B; Gaudriault S PLoS One; 2019; 14(2):e0212809. PubMed ID: 30794697 [TBL] [Abstract][Full Text] [Related]
54. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. Vigneux F; Zumbihl R; Jubelin G; Ribeiro C; Poncet J; Baghdiguian S; Givaudan A; Brehélin M J Biol Chem; 2007 Mar; 282(13):9571-9580. PubMed ID: 17229739 [TBL] [Abstract][Full Text] [Related]
55. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. Ji D; Yi Y; Kang GH; Choi YH; Kim P; Baek NI; Kim Y FEMS Microbiol Lett; 2004 Oct; 239(2):241-8. PubMed ID: 15476972 [TBL] [Abstract][Full Text] [Related]
56. Microbial population dynamics in the hemolymph of Manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Singh S; Reese JM; Casanova-Torres AM; Goodrich-Blair H; Forst S Appl Environ Microbiol; 2014 Jul; 80(14):4277-85. PubMed ID: 24814780 [TBL] [Abstract][Full Text] [Related]
57. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities. Castro DP; Figueiredo MB; Genta FA; Ribeiro IM; Tomassini TC; Azambuja P; Garcia ES J Insect Physiol; 2009 Jun; 55(6):532-7. PubMed ID: 19232405 [TBL] [Abstract][Full Text] [Related]
58. Benzylideneacetone, an eicosanoid biosynthesis inhibitor enhances baculovirus pathogenicity in the diamondback moth, Plutella xylostella. Kim J; Kim Y J Invertebr Pathol; 2011 Feb; 106(2):308-13. PubMed ID: 21112333 [TBL] [Abstract][Full Text] [Related]
59. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827 [TBL] [Abstract][Full Text] [Related]
60. Characterization of a cytotoxic pilin subunit of Xenorhabdus nematophila. Khandelwal P; Bhatnagar R; Choudhury D; Banerjee N Biochem Biophys Res Commun; 2004 Feb; 314(4):943-9. PubMed ID: 14751223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]