BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17395495)

  • 1. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops.
    Xu Q; Wen X; Deng X
    Mol Phylogenet Evol; 2007 Jul; 44(1):315-24. PubMed ID: 17395495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops.
    Wan H; Yuan W; Bo K; Shen J; Pang X; Chen J
    BMC Genomics; 2013 Feb; 14():109. PubMed ID: 23418910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary analysis of S-RNase genes from Rosaceae species.
    Ma RC; Oliveira MM
    Mol Genet Genomics; 2002 Mar; 267(1):71-8. PubMed ID: 11919717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species.
    Zhong Y; Yin H; Sargent DJ; Malnoy M; Cheng ZM
    BMC Genomics; 2015 Feb; 16(1):77. PubMed ID: 25759136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar.
    Zhang Q; Zhang ZY; Lin SZ; Zheng HQ; Lin YZ; An XM; Li Y; Li HX
    Plant Biol (Stuttg); 2008 May; 10(3):310-22. PubMed ID: 18426478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean.
    Peñuela S; Danesh D; Young ND
    Theor Appl Genet; 2002 Feb; 104(2-3):261-272. PubMed ID: 12582696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, "chestnut rose".
    Xu Q; Wen X; Deng X
    Genetics; 2008 Apr; 178(4):2081-91. PubMed ID: 18245857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme expansion of NBS-encoding genes in Rosaceae.
    Jia Y; Yuan Y; Zhang Y; Yang S; Zhang X
    BMC Genet; 2015 May; 16():48. PubMed ID: 25935646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.).
    Glynn NC; Comstock JC; Sood SG; Dang PM; Chaparro JX
    Pest Manag Sci; 2008 Jan; 64(1):48-56. PubMed ID: 17935262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.
    Meyers BC; Dickerman AW; Michelmore RW; Sivaramakrishnan S; Sobral BW; Young ND
    Plant J; 1999 Nov; 20(3):317-32. PubMed ID: 10571892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple tandem gene duplications in a neutral lipase gene cluster in Drosophila.
    Horne I; Haritos VS
    Gene; 2008 Mar; 411(1-2):27-37. PubMed ID: 18262735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species.
    Terefe-Ayana D; Kaufmann H; Linde M; Debener T
    BMC Genomics; 2012 Aug; 13():409. PubMed ID: 22905676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allopolyploidy in Fragariinae (Rosaceae): comparing four DNA sequence regions, with comments on classification.
    Lundberg M; Töpel M; Eriksen B; Nylander JA; Eriksson T
    Mol Phylogenet Evol; 2009 May; 51(2):269-80. PubMed ID: 19268709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family.
    Perazzolli M; Malacarne G; Baldo A; Righetti L; Bailey A; Fontana P; Velasco R; Malnoy M
    PLoS One; 2014; 9(2):e83844. PubMed ID: 24505246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies.
    Cannon SB; Zhu H; Baumgarten AM; Spangler R; May G; Cook DR; Young ND
    J Mol Evol; 2002 Apr; 54(4):548-62. PubMed ID: 11956693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomes, diversity and resistance gene analogues in Musa species.
    Azhar M; Heslop-Harrison JS
    Cytogenet Genome Res; 2008; 121(1):59-66. PubMed ID: 18544928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-TIR-NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.).
    Gutermuth A; György Z; Hegedus A; Pedryc A
    Acta Biol Hung; 2011 Jun; 62(2):171-81. PubMed ID: 21555269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Patterns of Gene Gain and Loss: Diverse Evolutionary Modes of NBS-Encoding Genes in Three Solanaceae Crop Species.
    Qian LH; Zhou GC; Sun XQ; Lei Z; Zhang YM; Xue JY; Hang YY
    G3 (Bethesda); 2017 May; 7(5):1577-1585. PubMed ID: 28364035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus.
    Buti M; Sargent DJ; Mhelembe KG; Delfino P; Tobutt KR; Velasco R
    BMC Res Notes; 2016 May; 9():268. PubMed ID: 27169718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification.
    Gehrke B; Bräuchler C; Romoleroux K; Lundberg M; Heubl G; Eriksson T
    Mol Phylogenet Evol; 2008 Jun; 47(3):1030-44. PubMed ID: 18479944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.