These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17395591)

  • 1. Structure-based mapping of DAF active site residues that accelerate the decay of C3 convertases.
    Kuttner-Kondo L; Hourcade DE; Anderson VE; Muqim N; Mitchell L; Soares DC; Barlow PN; Medof ME
    J Biol Chem; 2007 Jun; 282(25):18552-18562. PubMed ID: 17395591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A corresponding tyrosine residue in the C2/factor B type A domain is a hot spot in the decay acceleration of the complement C3 convertases.
    Kuttner-Kondo LA; Dybvig MP; Mitchell LM; Muqim N; Atkinson JP; Medof ME; Hourcade DE
    J Biol Chem; 2003 Dec; 278(52):52386-91. PubMed ID: 14561755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the active sites in decay-accelerating factor.
    Kuttner-Kondo LA; Mitchell L; Hourcade DE; Medof ME
    J Immunol; 2001 Aug; 167(4):2164-71. PubMed ID: 11490001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decay-accelerating factor (DAF), complement receptor 1 (CR1), and factor H dissociate the complement AP C3 convertase (C3bBb) via sites on the type A domain of Bb.
    Hourcade DE; Mitchell L; Kuttner-Kondo LA; Atkinson JP; Medof ME
    J Biol Chem; 2002 Jan; 277(2):1107-12. PubMed ID: 11694537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy between two active sites of human complement receptor type 1 (CD35) in complement regulation: implications for the structure of the classical pathway C3 convertase and generation of more potent inhibitors.
    Krych-Goldberg M; Hauhart RE; Porzukowiak T; Atkinson JP
    J Immunol; 2005 Oct; 175(7):4528-35. PubMed ID: 16177096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure/function studies of human decay-accelerating factor.
    Brodbeck WG; Kuttner-Kondo L; Mold C; Medof ME
    Immunology; 2000 Sep; 101(1):104-11. PubMed ID: 11012760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling and mechanism of action of human decay-accelerating factor.
    Kuttner-Kondo L; Medof ME; Brodbeck W; Shoham M
    Protein Eng; 1996 Dec; 9(12):1143-9. PubMed ID: 9010927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases.
    Krych-Goldberg M; Hauhart RE; Subramanian VB; Yurcisin BM; Crimmins DL; Hourcade DE; Atkinson JP
    J Biol Chem; 1999 Oct; 274(44):31160-8. PubMed ID: 10531307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a functionally active fragment of decay-accelerating factor.
    Uhrinova S; Lin F; Ball G; Bromek K; Uhrin D; Medof ME; Barlow PN
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4718-23. PubMed ID: 12672958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein.
    Kim YU; Kinoshita T; Molina H; Hourcade D; Seya T; Wagner LM; Holers VM
    J Exp Med; 1995 Jan; 181(1):151-9. PubMed ID: 7528766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay.
    Harris CL; Pettigrew DM; Lea SM; Morgan BP
    J Immunol; 2007 Jan; 178(1):352-9. PubMed ID: 17182573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation in decay accelerating factor (DAF) structure among primates.
    Kuttner-Kondo L; Subramanian VB; Atkinson JP; Yu J; Medof ME
    Dev Comp Immunol; 2000 Dec; 24(8):815-27. PubMed ID: 10906393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decay acceleration of the complement alternative pathway C3 convertase.
    Hourcade DE; Mitchell LM; Medof ME
    Immunopharmacology; 1999 May; 42(1-3):167-73. PubMed ID: 10408377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positively charged amino acids at the interface between alpha-chain CCP1 and CCP2 of C4BP are required for regulation of the classical C3-convertase.
    Blom AM; Zadura AF; Villoutreix BO; Dahlbäck B
    Mol Immunol; 2000 Jun; 37(8):445-53. PubMed ID: 11090879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of decay-accelerating factor: identification of residues important for binding of the Escherichia coli Dr adhesin and complement regulation.
    Hasan RJ; Pawelczyk E; Urvil PT; Venkatarajan MS; Goluszko P; Kur J; Selvarangan R; Nowicki S; Braun WA; Nowicki BJ
    Infect Immun; 2002 Aug; 70(8):4485-93. PubMed ID: 12117960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of complement regulatory domains in vaccinia virus complement control protein.
    Mullick J; Bernet J; Panse Y; Hallihosur S; Singh AK; Sahu A
    J Virol; 2005 Oct; 79(19):12382-93. PubMed ID: 16160165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences between the binding sites of the complement regulatory proteins DAF, CR1, and factor H on C3 convertases.
    Pangburn MK
    J Immunol; 1986 Mar; 136(6):2216-21. PubMed ID: 2419425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of decay-accelerating factor on the assembly of the classical and alternative pathway C3 convertases in the presence of C4 or C3 nephritic factor.
    Ito S; Tamura N; Fujita T
    Immunology; 1989 Dec; 68(4):449-52. PubMed ID: 2481642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of decay-accelerating factor with echovirus 7.
    Plevka P; Hafenstein S; Harris KG; Cifuente JO; Zhang Y; Bowman VD; Chipman PR; Bator CM; Lin F; Medof ME; Rossmann MG
    J Virol; 2010 Dec; 84(24):12665-74. PubMed ID: 20881044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli.
    White J; Lukacik P; Esser D; Steward M; Giddings N; Bright JR; Fritchley SJ; Morgan BP; Lea SM; Smith GP; Smith RA
    Protein Sci; 2004 Sep; 13(9):2406-15. PubMed ID: 15322283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.