These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17395759)

  • 1. Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging.
    Felton SM; Gaige TA; Reese TG; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):255-65. PubMed ID: 17395759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associating the mesoscale fiber organization of the tongue with local strain rate during swallowing.
    Felton SM; Gaige TA; Benner T; Wang R; Reese TG; Wedeen VJ; Gilbert RJ
    J Biomech; 2008; 41(8):1782-9. PubMed ID: 18456271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical basis of lingual hydrostatic deformation.
    Gilbert RJ; Napadow VJ; Gaige TA; Wedeen VJ
    J Exp Biol; 2007 Dec; 210(Pt 23):4069-82. PubMed ID: 18025008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical basis for lingual muscular deformation during swallowing.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    Am J Physiol; 1999 Sep; 277(3):G695-701. PubMed ID: 10484396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of lingual tissue deformation associated with bolus containment and propulsion during deglutition as determined by echo-planar MRI.
    Gilbert RJ; Daftary S; Campbell TA; Weisskoff RM
    J Magn Reson Imaging; 1998; 8(3):554-60. PubMed ID: 9626868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI.
    Mijailovich SM; Stojanovic B; Kojic M; Liang A; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2010 Nov; 109(5):1500-14. PubMed ID: 20689096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two dimensional computational model coupling myoarchitecture-based lingual tissue mechanics with liquid bolus flow during oropharyngeal swallowing.
    Leichter DM; Stark NE; Leary OP; Brodsky MB; Gilbert RJ; Nicosia MA
    Comput Biol Med; 2022 Jun; 145():105446. PubMed ID: 35390748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lingual propulsive pressures across consistencies generated by the anteromedian and posteromedian tongue by healthy young adults.
    Gingrich LL; Stierwalt JA; Hageman CF; LaPointe LL
    J Speech Lang Hear Res; 2012 Jun; 55(3):960-72. PubMed ID: 22232400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating muscles underlying tongue base retraction in deglutition using muscular functional magnetic resonance imaging (mfMRI).
    Gassert RB; Pearson WG
    Magn Reson Imaging; 2016 Feb; 34(2):204-8. PubMed ID: 26523657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging.
    Wedeen VJ; Reese TG; Napadow VJ; Gilbert RJ
    Biophys J; 2001 Feb; 80(2):1024-8. PubMed ID: 11159469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional muscular architecture of the human tongue determined in vivo with diffusion tensor magnetic resonance imaging.
    Gilbert RJ; Napadow VJ
    Dysphagia; 2005; 20(1):1-7. PubMed ID: 15886960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinative organization of lingual propulsion during the normal adult swallow.
    Wilson EM; Green JR
    Dysphagia; 2006 Oct; 21(4):226-36. PubMed ID: 17221289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tongue pressure patterns during water swallowing.
    Kennedy D; Kieser J; Bolter C; Swain M; Singh B; Waddell JN
    Dysphagia; 2010 Mar; 25(1):11-9. PubMed ID: 19568810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional myoarchitecture of the bovine tongue demonstrated by diffusion spectrum magnetic resonance imaging with tractography.
    Gilbert RJ; Wedeen VJ; Magnusson LH; Benner T; Wang R; Dai G; Napadow VJ; Roche KK
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Nov; 288(11):1173-82. PubMed ID: 17031810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramural mechanics of the human tongue in association with physiological deformations.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    J Biomech; 1999 Jan; 32(1):1-12. PubMed ID: 10050946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of lingual exercise on swallowing in older adults.
    Robbins J; Gangnon RE; Theis SM; Kays SA; Hewitt AL; Hind JA
    J Am Geriatr Soc; 2005 Sep; 53(9):1483-9. PubMed ID: 16137276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic aspects of lingual propulsive activity in swallowing.
    Hamlet SL
    Dysphagia; 1989; 4(3):136-45. PubMed ID: 2640186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of tongue-, jaw-, and swallowing-related muscle coordination during voluntarily triggered swallowing.
    Ono T; Iwata H; Hori K; Tamine K; Kondoh J; Hamanaka S; Maeda Y
    Int J Prosthodont; 2009; 22(5):493-8. PubMed ID: 20095201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical model of sagittal tongue bending.
    Napadow VJ; Kamm RD; Gilbert RJ
    J Biomech Eng; 2002 Oct; 124(5):547-56. PubMed ID: 12405598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic MRI analysis of tumor and organ motion during rest and deglutition and margin assessment for radiotherapy of head-and-neck cancer.
    Bradley JA; Paulson ES; Ahunbay E; Schultz C; Li XA; Wang D
    Int J Radiat Oncol Biol Phys; 2011 Dec; 81(5):e803-12. PubMed ID: 21300480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.