BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17395883)

  • 1. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques?
    Kanter JE; Johansson F; LeBoeuf RC; Bornfeldt KE
    Circ Res; 2007 Mar; 100(6):769-81. PubMed ID: 17395883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL.
    Lamharzi N; Renard CB; Kramer F; Pennathur S; Heinecke JW; Chait A; Bornfeldt KE
    Diabetes; 2004 Dec; 53(12):3217-25. PubMed ID: 15561953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pigment Epithelial-Derived Factor Deficiency Accelerates Atherosclerosis Development via Promoting Endothelial Fatty Acid Uptake in Mice With Hyperlipidemia.
    Wang H; Yang Y; Yang M; Li X; Tan J; Wu Y; Zhang Y; Li Y; Hu B; Deng S; Yang F; Gao S; Li H; Yang Z; Chen H; Cai W
    J Am Heart Assoc; 2019 Nov; 8(22):e013028. PubMed ID: 31711388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TLR4 antagonist attenuates atherogenesis in LDL receptor-deficient mice with diet-induced type 2 diabetes.
    Lu Z; Zhang X; Li Y; Lopes-Virella MF; Huang Y
    Immunobiology; 2015 Nov; 220(11):1246-54. PubMed ID: 26162692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Egr-1 deficiency in bone marrow-derived cells reduces atherosclerotic lesion formation in a hyperlipidaemic mouse model.
    Albrecht C; Preusch MR; Hofmann G; Morris-Rosenfeld S; Blessing E; Rosenfeld ME; Katus HA; Bea F
    Cardiovasc Res; 2010 May; 86(2):321-9. PubMed ID: 20110335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urotensin II receptor knockout mice on an ApoE knockout background fed a high-fat diet exhibit an enhanced hyperlipidemic and atherosclerotic phenotype.
    Bousette N; D'Orleans-Juste P; Kiss RS; You Z; Genest J; Al-Ramli W; Qureshi ST; Gramolini A; Behm D; Ohlstein EH; Harrison SM; Douglas SA; Giaid A
    Circ Res; 2009 Sep; 105(7):686-95, 19 p following 695. PubMed ID: 19696412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions.
    Renard CB; Kramer F; Johansson F; Lamharzi N; Tannock LR; von Herrath MG; Chait A; Bornfeldt KE
    J Clin Invest; 2004 Sep; 114(5):659-68. PubMed ID: 15343384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous Insulin Infusion Can Decrease Atherosclerosis in Diabetic Rodents by Improving Lipids, Inflammation, and Endothelial Function.
    Park K; Li Q; Evcimen ND; Rask-Madsen C; Maeda Y; Maddaloni E; Yokomizo H; Shinjo T; St-Louis R; Fu J; Gordin D; Khamaisi M; Pober D; Keenan H; King GL
    Arterioscler Thromb Vasc Biol; 2018 Jan; 38(1):92-101. PubMed ID: 29162603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism.
    Zhao N; Yu X; Zhu X; Song Y; Gao F; Yu B; Qu A
    J Cardiovasc Transl Res; 2024 Feb; 17(1):133-152. PubMed ID: 38091232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression.
    Horio E; Kadomatsu T; Miyata K; Arai Y; Hosokawa K; Doi Y; Ninomiya T; Horiguchi H; Endo M; Tabata M; Tazume H; Tian Z; Takahashi O; Terada K; Takeya M; Hao H; Hirose N; Minami T; Suda T; Kiyohara Y; Ogawa H; Kaikita K; Oike Y
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):790-800. PubMed ID: 24526691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2013 Russell Ross memorial lecture in vascular biology: cellular and molecular mechanisms of diabetes mellitus-accelerated atherosclerosis.
    Bornfeldt KE
    Arterioscler Thromb Vasc Biol; 2014 Apr; 34(4):705-14. PubMed ID: 24665124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus.
    Ramachandran S; Vinitha A; Kartha CC
    Cardiovasc Diabetol; 2016 Nov; 15(1):152. PubMed ID: 27809851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation.
    Poznyak A; Grechko AV; Poggio P; Myasoedova VA; Alfieri V; Orekhov AN
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice.
    Hasan ST; Zingg JM; Kwan P; Noble T; Smith D; Meydani M
    Atherosclerosis; 2014 Jan; 232(1):40-51. PubMed ID: 24401215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity.
    Keren P; George J; Shaish A; Levkovitz H; Janakovic Z; Afek A; Goldberg I; Kopolovic J; Keren G; Harats D
    Diabetes; 2000 Jun; 49(6):1064-9. PubMed ID: 10866061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced glycation end-product Nε-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes.
    Wang Z; Jiang Y; Liu N; Ren L; Zhu Y; An Y; Chen D
    Atherosclerosis; 2012 Apr; 221(2):387-96. PubMed ID: 22305260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats.
    Zhao Y; Yang Y; Xing R; Cui X; Xiao Y; Xie L; You P; Wang T; Zeng L; Peng W; Li D; Chen H; Liu M
    Atherosclerosis; 2018 Apr; 271():26-35. PubMed ID: 29459263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integral role of receptor for advanced glycation end products (RAGE) in nondiabetic atherosclerosis.
    Uekita H; Ishibashi T; Shiomi M; Koyama H; Ohtsuka S; Yamamoto H; Yamagishi S; Inoue H; Itabe H; Sugimoto K; Kamioka M; Ohkawara H; Wada I; Yasuchika T
    Fukushima J Med Sci; 2019; 65(3):109-121. PubMed ID: 31915324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages.
    Laguna-Fernandez A; Checa A; Carracedo M; Artiach G; Petri MH; Baumgartner R; Forteza MJ; Jiang X; Andonova T; Walker ME; Dalli J; Arnardottir H; Gisterå A; Thul S; Wheelock CE; Paulsson-Berne G; Ketelhuth DFJ; Hansson GK; Bäck M
    Circulation; 2018 Oct; 138(16):1693-1705. PubMed ID: 29739755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Administration of pioglitazone in low-density lipoprotein receptor-deficient mice inhibits lesion progression and matrix metalloproteinase expression in advanced atherosclerotic plaques.
    He L; Game BA; Nareika A; Garvey WT; Huang Y
    J Cardiovasc Pharmacol; 2006 Nov; 48(5):212-22. PubMed ID: 17110803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.