BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17395992)

  • 1. Calculation of the induced voltage at the terminals of cardiac pacemakers submitted to conducted disturbances.
    Andretzko JP; Hedjiedj A; Guendouz L
    Physiol Meas; 2007 Apr; 28(4):363-72. PubMed ID: 17395992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields.
    Joosten S; Pammler K; Silny J
    Phys Med Biol; 2009 Feb; 54(3):591-609. PubMed ID: 19124951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodological approach for the characterization of cardiac pacemaker immunity to low frequency interferences: case of 50 Hz, 60 Hz, 10 kHz and 25 kHz led disruptions.
    Hedjiedj A; Goeury C; Nadi M
    J Med Eng Technol; 2002; 26(5):223-7. PubMed ID: 12487715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behavior of dual-chamber pacemakers exposed to a conducted low-frequency disruptive signal.
    Babouri A; Hedjiedj A; Guendouz L; Andretzko JP
    Physiol Meas; 2006 Aug; 27(8):725-36. PubMed ID: 16772671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro investigation of eddy current effect on pacemaker operation generated by low frequency magnetic field.
    Babouri A; Hedjeidj A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5684-7. PubMed ID: 18003302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function.
    Park SM; Kamondetdacha R; Nyenhuis JA
    J Magn Reson Imaging; 2007 Nov; 26(5):1278-85. PubMed ID: 17969143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of probe size on the measurement accuracy of non-uniform ELF magnetic fields.
    Bottauscio O; Chiampi M; Crotti G; Zucca M
    Radiat Prot Dosimetry; 2004; 111(4):369-72. PubMed ID: 15550704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unipolar cardiac pacemakers in electromagnetic fields of high voltage overhead lines.
    Scholten A; Joosten S; Silny J
    J Med Eng Technol; 2005; 29(4):170-5. PubMed ID: 16012068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study on an equivalent source model for inhomogeneous magnetic field dosimetry in the low-frequency range.
    Nishizawa S; Ruoss HO; Landstorfer FM; Hashimoto O
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):612-6. PubMed ID: 15072215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable cardiac pacemaker electromagnetic compatibility testing in a novel security system simulator.
    Kainz W; Casamento JP; Ruggera PS; Chan DD; Witters DM
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):520-30. PubMed ID: 15759582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for determining the induced voltage at the terminals of a pacemaker exposed to a low frequency magnetic field.
    Andretzko JP; Hedjiedj A; Guendouz L
    Physiol Meas; 2008 Sep; 29(9):1121-32. PubMed ID: 18784392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of nanodosimetric spectra on the sensitive volume length and ion drift in an ion-counting nanodosemeter.
    Shchemelinin S; Hilgers G; Gargioni E; Grosswendt B; Breskin A; Chechik R
    Radiat Prot Dosimetry; 2006; 122(1-4):446-50. PubMed ID: 17213217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.
    Sikora M; Dohm O; Alber M
    Phys Med Biol; 2007 Aug; 52(15):4449-63. PubMed ID: 17634643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A method for worst-case study of coupling between medical equipment].
    Geisbusch L; Schick M; Balcerczak S; Landstorfer F
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():668-71. PubMed ID: 12465269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation and properties of trap structural functions for various spatially correlated systems.
    Mandowski A
    Radiat Prot Dosimetry; 2006; 119(1-4):85-8. PubMed ID: 16702242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pacemaker interference by 60-Hz contact currents.
    Dawson TW; Caputa K; Stuchly MA; Kavet R
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):878-86. PubMed ID: 12148827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling a 222Rn measurement technique based on absorption in polycarbonates and track-etch counting.
    Pressyanov DS
    Health Phys; 2009 Dec; 97(6):604-12. PubMed ID: 19901595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic interference in pacemakers in single-engine fixed-wing aircraft: a European perspective.
    De Rotte AA; Van Der Kemp P
    Aviat Space Environ Med; 2002 Mar; 73(3):179-83. PubMed ID: 11908881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.
    Benabdallah N; Benahmed N; Benyoucef B; Bouhmidi R; Khelif M
    Phys Med Biol; 2007 Aug; 52(16):4943-52. PubMed ID: 17671345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of 50 to 60 Hz and of 20 to 50 kHz magnetic fields on the operation of implanted cardiac pacemakers].
    Frank R; Souques M; Himbert C; Hidden-Lucet F; Petitot JC; Fontaine G; Lambrozo J; Magne I; Bailly JM
    Arch Mal Coeur Vaiss; 2003 Apr; 96 Spec No 3():35-41. PubMed ID: 12741330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.