These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17396410)

  • 1. Is phosphorus recovery from waste water feasible?
    Berg U; Knoll G; Kaschka E; Weidler PG; Nüesch R
    Environ Technol; 2007 Feb; 28(2):165-72. PubMed ID: 17396410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate.
    Berg U; Donnert D; Weidler PG; Kaschka E; Knoll G; Nüesch R
    Water Sci Technol; 2006; 53(3):131-8. PubMed ID: 16605025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dutch analysis for P-recovery from municipal wastewater.
    Roeleveld P; Loeffen P; Temmink H; Klapwijk B
    Water Sci Technol; 2004; 49(10):191-9. PubMed ID: 15259955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technico-economic feasibility of P-recovery from municipal wastewaters.
    Jeanmaire N; Evans T
    Environ Technol; 2001 Nov; 22(11):1355-61. PubMed ID: 11804357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-Recovery from sewage by seeded crystallisation in a pilot plant in batch mode technology.
    Ehbrecht A; Schönauer S; Fuderer T; Schuhmann R
    Water Sci Technol; 2011; 63(2):339-44. PubMed ID: 21252440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus recovery from wastewater: needs, technologies and costs.
    Cornel P; Schaum C
    Water Sci Technol; 2009; 59(6):1069-76. PubMed ID: 19342801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrients in urine: energetic aspects of removal and recovery.
    Maurer M; Schwegler P; Larsen TA
    Water Sci Technol; 2003; 48(1):37-46. PubMed ID: 12926619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wollastonite as reactive filter medium for sorption of wastewater ammonium and phosphorus.
    Hedström A
    Environ Technol; 2006 Jul; 27(7):801-9. PubMed ID: 16894824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery.
    Song Y; Weidler PG; Berg U; Nüesch R; Donnert D
    Chemosphere; 2006 Apr; 63(2):236-43. PubMed ID: 16213545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process.
    Kim EH; Lee DW; Hwang HK; Yim S
    Chemosphere; 2006 Apr; 63(2):192-201. PubMed ID: 16213546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment.
    Gustafsson JP; Renman A; Renman G; Poll K
    Water Res; 2008 Jan; 42(1-2):189-97. PubMed ID: 17659317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer.
    Sengupta S; Pandit A
    Water Res; 2011 May; 45(11):3318-30. PubMed ID: 21531433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential phosphorus recovery in a WWTP with the BCFS process: interactions with the biological process.
    Barat R; van Loosdrecht MC
    Water Res; 2006 Nov; 40(19):3507-16. PubMed ID: 17011018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional planning and product recovery as tools for sustainable sludge management.
    Stypka T; Plaza E; Stypka A; Trela J; Hultman B
    Water Sci Technol; 2002; 46(4-5):389-96. PubMed ID: 12361038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).
    Zeeman G; Kujawa K; de Mes T; Hernandez L; de Graaff M; Abu-Ghunmi L; Mels A; Meulman B; Temmink H; Buisman C; van Lier J; Lettinga G
    Water Sci Technol; 2008; 57(8):1207-12. PubMed ID: 18469391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lime stabilisation of enhanced biological phosphorus removal sludges on the phosphorus availability to plants.
    Seyhan D; Erdincler A
    Water Sci Technol; 2003; 48(1):155-62. PubMed ID: 12926632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and desorption of phosphorus by shale: batch and column studies.
    Cyrus JS; Reddy GB
    Water Sci Technol; 2010; 61(3):599-606. PubMed ID: 20150695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.
    Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N
    Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.