These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17396673)

  • 1. Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom.
    Miao AJ; Wang WX
    Environ Sci Technol; 2007 Mar; 41(5):1777-82. PubMed ID: 17396673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.
    Wang MJ; Wang WX
    Aquat Toxicol; 2009 Nov; 95(2):99-107. PubMed ID: 19748136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
    Miao AJ; Wang WX
    Aquat Toxicol; 2006 Jun; 78(2):114-26. PubMed ID: 16616380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: exposure to cadmium.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):377-86. PubMed ID: 21216348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.
    Morelli E; Ferrara R; Bellini B; Dini F; Di Giuseppe G; Fantozzi L
    Sci Total Environ; 2009 Dec; 408(2):286-93. PubMed ID: 19846208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity effects of zinc on two marine diatoms, under varying macronutrient environment.
    Anu PR; Bijoy Nandan S; Jayachandran PR; Don Xavier ND; Midhun AM; Mohan D
    Mar Environ Res; 2018 Nov; 142():275-285. PubMed ID: 30389236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure.
    Wu Y; Wang WX
    Aquat Toxicol; 2013 Aug; 138-139():52-9. PubMed ID: 23707793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana.
    Rijstenbil JW; Sandee A; Van Drie J; Wijnholds JA
    FEMS Microbiol Rev; 1994 Aug; 14(4):387-96. PubMed ID: 7917426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure.
    Wang MJ; Wang WX
    Aquat Toxicol; 2011 Jan; 101(2):387-95. PubMed ID: 21216349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper.
    Rijstenbil JW; Gerringa LJ
    Aquat Toxicol; 2002 Jan; 56(2):115-31. PubMed ID: 11755700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis.
    Wang MJ; Wang WX
    Environ Sci Technol; 2008 Nov; 42(22):8603-8. PubMed ID: 19068855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium toxicity in a marine diatom as predicted by the cellular metal sensitive fraction.
    Wang M; Wang WX
    Environ Sci Technol; 2008 Feb; 42(3):940-6. PubMed ID: 18323126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting cadmium toxicity with the kinetics of phytochelatin induction in a marine diatom.
    Wu Y; Yuan Y; Yuan H; Zhang W; Zhang L
    Aquat Toxicol; 2019 Feb; 207():101-109. PubMed ID: 30557755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica.
    Hippmann AA; Schuback N; Moon KM; McCrow JP; Allen AE; Foster LJ; Green BR; Maldonado MT
    PLoS One; 2017; 12(8):e0181753. PubMed ID: 28837661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine Enhances Bioavailability of Copper to Marine Phytoplankton.
    Walsh MJ; Goodnow SD; Vezeau GE; Richter LV; Ahner BA
    Environ Sci Technol; 2015 Oct; 49(20):12145-52. PubMed ID: 26420592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and subcellular distribution of aluminum in a marine diatom.
    Liu Q; Zhou L; Liu F; Fortin C; Tan Y; Huang L; Campbell PGC
    Ecotoxicol Environ Saf; 2019 Mar; 169():85-92. PubMed ID: 30439583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate and ammonium proportion plays a key role in copper phytoextraction, improving the antioxidant defense in Tanzania guinea grass.
    Souza Junior JC; Nogueirol RC; Monteiro FA
    Ecotoxicol Environ Saf; 2019 Apr; 171():823-832. PubMed ID: 30660976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NO
    de Souza Junior JC; Nogueirol RC; Monteiro FA
    Environ Sci Pollut Res Int; 2018 May; 25(14):14083-14096. PubMed ID: 29520547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Cu impacts on freshwater diatoms: biochemical and metabolomic responses of Tabellaria flocculosa (Roth) Kützing.
    Gonçalves S; Kahlert M; Almeida SFP; Figueira E
    Sci Total Environ; 2018 Jun; 625():1234-1246. PubMed ID: 29996420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model.
    Pinho GL; Bianchini A
    Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.