These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 173969)

  • 1. Adaptation of skeletal muscle to endurance exercise.
    Holloszy JO
    Med Sci Sports; 1975; 7(3):155-64. PubMed ID: 173969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle.
    Ojuka EO
    Proc Nutr Soc; 2004 May; 63(2):275-8. PubMed ID: 15294043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron deficiency anemia: mitochondrial alpha-glycerophosphate dehydrogenase in guinea pig skeletal muscle.
    Macdonald VW; Charache S; Hathaway PJ
    J Lab Clin Med; 1985 Jan; 105(1):11-8. PubMed ID: 2981941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle metabolism during exercise.
    Holloszy JO
    Arch Phys Med Rehabil; 1982 May; 63(5):231-4. PubMed ID: 7073462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rotenone-sensitive oxidation of NADH and F0F1-ATPase activity in a homogenate of rat skeletal muscles during thermal adaptation].
    Ritov VB; Gorbacheva LR; Tverdislova IL; Leĭkin IuN; Bazhenov IuI
    Biokhimiia; 1993 Nov; 58(11):1779-87. PubMed ID: 8268314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins.
    Schantz PG
    Acta Physiol Scand Suppl; 1986; 558():1-62. PubMed ID: 2950727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical adaptations to endurance exercise in muscle.
    Holloszy JO; Booth FW
    Annu Rev Physiol; 1976; 38():273-91. PubMed ID: 130825
    [No Abstract]   [Full Text] [Related]  

  • 11. Maintenance of the adaptation of skeletal muscle mitochondria to exercise in old rats.
    Young JC; Chen M; Holloszy JO
    Med Sci Sports Exerc; 1983; 15(3):243-6. PubMed ID: 6578396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and qualitative adaptation of skeletal muscle mitochondria to increased physical activity.
    Zoll J; Koulmann N; Bahi L; Ventura-Clapier R; Bigard AX
    J Cell Physiol; 2003 Feb; 194(2):186-93. PubMed ID: 12494457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps.
    Rasmussen UF; Vielwerth SE; Rasmussen HN
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):435-46. PubMed ID: 15123217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man.
    Harris RC; Hultman E; Kaijser L; Nordesjö LO
    Scand J Clin Lab Invest; 1975 Jan; 35(1):87-95. PubMed ID: 1129596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional adaptations to physical activity and inactivity.
    Saltin B; Rowell LB
    Fed Proc; 1980 Apr; 39(5):1506-13. PubMed ID: 7364045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise.
    Sahlin K
    Acta Physiol Scand Suppl; 1978; 455():1-56. PubMed ID: 27059
    [No Abstract]   [Full Text] [Related]  

  • 18. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.
    Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered cellular distribution of hexokinase in skeletal muscle after exercise.
    Van Houten DR; Davis JM; Meyers DM; Durstine JL
    Int J Sports Med; 1992 Jul; 13(5):436-8. PubMed ID: 1521963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle.
    Rasmussen UF; Krustrup P; Bangsbo J; Rasmussen HN
    Pflugers Arch; 2001 Nov; 443(2):180-7. PubMed ID: 11713642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.