These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 173969)

  • 21. Effect of exercise on hexokinase distribution and mitochondrial respiration in skeletal muscle.
    Chen J; Gollnick PD
    Pflugers Arch; 1994 Jun; 427(3-4):257-63. PubMed ID: 8072844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early changes of muscle mitochondria in Duchenne dystrophy. Partition and activity of mitochondrial enzymes in fractionated muscle of unaffected boys and adults and patients.
    Scholte HR; Busch HF
    J Neurol Sci; 1980 Mar; 45(2-3):217-34. PubMed ID: 6245185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical adaptations to exercise: aerobic metabolism.
    Holloszy JO
    Exerc Sport Sci Rev; 1973; 1():45-71. PubMed ID: 4806384
    [No Abstract]   [Full Text] [Related]  

  • 24. Enzyme activities and muscle strength after "sprint training" in man.
    Thorstensson A; Sjödin B; Karlsson J
    Acta Physiol Scand; 1975 Jul; 94(3):313-8. PubMed ID: 170792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of muscle to exercise. Increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids.
    Molé PA; Oscai LB; Holloszy JO
    J Clin Invest; 1971 Nov; 50(11):2323-30. PubMed ID: 5096516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration.
    Ramanathan R; Mancini RA; Joseph P; Suman SP
    Meat Sci; 2013 Apr; 93(4):893-7. PubMed ID: 23314615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females.
    Komi PV; Karlsson J
    Acta Physiol Scand; 1978 Jun; 103(2):210-8. PubMed ID: 150196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of skeletal muscle oxidative enzyme enhancement with endurance training.
    Gollnick PD; Saltin B
    Clin Physiol; 1982 Feb; 2(1):1-12. PubMed ID: 7201906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of intermittent hypoxic training on indices of adaptation to hypoxia in rats during physical exertion].
    Havenauskas BL; Man'kovs'ka IM; Nosar VI; Nazarenko AI; Bratus' LV
    Fiziol Zh (1994); 2004; 50(6):32-42. PubMed ID: 15732757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The energy metabolism of myocardium and its regulation in animals of various age.
    Frolkis VV; Bogatskaya LN
    Exp Gerontol; 1968 Oct; 3(3):199-210. PubMed ID: 4398787
    [No Abstract]   [Full Text] [Related]  

  • 31. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
    Holloszy JO; Coyle EF
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Apr; 56(4):831-8. PubMed ID: 6373687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect.
    Haller RG; Henriksson KG; Jorfeldt L; Hultman E; Wibom R; Sahlin K; Areskog NH; Gunder M; Ayyad K; Blomqvist CG
    J Clin Invest; 1991 Oct; 88(4):1197-206. PubMed ID: 1918374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical changes during the muscle work. II. Metabolism of phosphagens during the working load.
    Böswart J; Krausová M; Van Hong N
    Acta Univ Carol Med (Praha); 1977; 23(5-6):343-55. PubMed ID: 159604
    [No Abstract]   [Full Text] [Related]  

  • 34. Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training.
    Schantz PG; Sjöberg B; Svedenhag J
    Acta Physiol Scand; 1986 Nov; 128(3):397-407. PubMed ID: 3491492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of testosterone and oestradiol on region specificity of skeletal muscle-ATP, creatine phosphokinase and myokinase in male and female Wistar rats.
    Ramamani A; Aruldhas MM; Govindarajulu P
    Acta Physiol Scand; 1999 Jun; 166(2):91-7. PubMed ID: 10383487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and functional changes in heart mitochondria from sucrose-fed hypertriglyceridemic rats.
    Carvajal K; El Hafidi M; Marin-Hernández A; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Sep; 1709(3):231-9. PubMed ID: 16139786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical alterations in the skeletal muscle of vitamin E deficient rats.
    Dhalla NS; Fedelesova M; Toffler I
    Can J Biochem; 1971 Nov; 49(11):1202-8. PubMed ID: 4400013
    [No Abstract]   [Full Text] [Related]  

  • 38. Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise.
    Sato T; Morita A; Mori N; Miura S
    Biochem Biophys Res Commun; 2015 Feb; 457(4):653-8. PubMed ID: 25603051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.
    Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG
    J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of enzymes of energy metabolism in rat heart.
    Andrés A; Satrústegui J; Machado A
    Biol Neonate; 1984; 45(2):78-85. PubMed ID: 6230112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.