These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 17397142)

  • 1. Kinetic characterization of human JNK2alpha2 reaction mechanism using substrate competitive inhibitors.
    Niu L; Chang KC; Wilson S; Tran P; Zuo F; Swinney DC
    Biochemistry; 2007 Apr; 46(16):4775-84. PubMed ID: 17397142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism and inhibitor characterization for c-jun-N-terminal kinase 3alpha1.
    Ember B; Kamenecka T; LoGrasso P
    Biochemistry; 2008 Mar; 47(10):3076-84. PubMed ID: 18269248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic characterization for c-jun-N-Terminal Kinase 1alpha1.
    Ember B; LoGrasso P
    Arch Biochem Biophys; 2008 Sep; 477(2):324-9. PubMed ID: 18559253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide.
    Ngoei KR; Catimel B; Church N; Lio DS; Dogovski C; Perugini MA; Watt PM; Cheng HC; Ng DC; Bogoyevitch MA
    Biochem J; 2011 Mar; 434(3):399-413. PubMed ID: 21162712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor.
    Ngoei KR; Catimel B; Milech N; Watt PM; Bogoyevitch MA
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1939-50. PubMed ID: 23792175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme kinetics and interaction studies for human JNK1β1 and substrates activating transcription factor 2 (ATF2) and c-Jun N-terminal kinase (c-Jun).
    Figuera-Losada M; LoGrasso PV
    J Biol Chem; 2012 Apr; 287(16):13291-302. PubMed ID: 22351776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic mechanism for p38 MAP kinase.
    LoGrasso PV; Frantz B; Rolando AM; O'Keefe SJ; Hermes JD; O'Neill EA
    Biochemistry; 1997 Aug; 36(34):10422-7. PubMed ID: 9265622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct role of c-Jun N-terminal kinase isoforms in human neutrophil apoptosis regulated by tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor.
    Kato T; Noma H; Kitagawa M; Takahashi T; Oshitani N; Kitagawa S
    J Interferon Cytokine Res; 2008 Apr; 28(4):235-43. PubMed ID: 18439101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase in insulin-induced Thr69 and Thr71 phosphorylation of activating transcription factor 2.
    Baan B; van Dam H; van der Zon GC; Maassen JA; Ouwens DM
    Mol Endocrinol; 2006 Aug; 20(8):1786-95. PubMed ID: 16601071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a specific domain responsible for JNK2alpha2 autophosphorylation.
    Cui J; Holgado-Madruga M; Su W; Tsuiki H; Wedegaertner P; Wong AJ
    J Biol Chem; 2005 Mar; 280(11):9913-20. PubMed ID: 15637069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells.
    Cui J; Han SY; Wang C; Su W; Harshyne L; Holgado-Madruga M; Wong AJ
    Cancer Res; 2006 Oct; 66(20):10024-31. PubMed ID: 17047065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest.
    Kuntzen C; Sonuc N; De Toni EN; Opelz C; Mucha SR; Gerbes AL; Eichhorst ST
    Cancer Res; 2005 Aug; 65(15):6780-8. PubMed ID: 16061660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of a substrate selective p38alpha inhibitor.
    Davidson W; Frego L; Peet GW; Kroe RR; Labadia ME; Lukas SM; Snow RJ; Jakes S; Grygon CA; Pargellis C; Werneburg BG
    Biochemistry; 2004 Sep; 43(37):11658-71. PubMed ID: 15362850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK.
    Barr RK; Boehm I; Attwood PV; Watt PM; Bogoyevitch MA
    J Biol Chem; 2004 Aug; 279(35):36327-38. PubMed ID: 15208323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituting c-Jun N-terminal kinase-3 (JNK3) ATP-binding site amino acid residues with their p38 counterparts affects binding of JNK- and p38-selective inhibitors.
    Fricker M; Lograsso P; Ellis S; Wilkie N; Hunt P; Pollack SJ
    Arch Biochem Biophys; 2005 Jun; 438(2):195-205. PubMed ID: 15907786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive activity of JNK2 alpha2 is dependent on a unique mechanism of MAPK activation.
    Nitta RT; Chu AH; Wong AJ
    J Biol Chem; 2008 Dec; 283(50):34935-45. PubMed ID: 18940813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive inhibition of MAP kinase activation by a peptide representing the alpha C helix of ERK.
    Horiuchi KY; Scherle PA; Trzaskos JM; Copeland RA
    Biochemistry; 1998 Jun; 37(25):8879-85. PubMed ID: 9636029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of human deoxycytidine kinase with the true phosphate donor uridine triphosphate.
    Hughes TL; Hahn TM; Reynolds KK; Shewach DS
    Biochemistry; 1997 Jun; 36(24):7540-7. PubMed ID: 9200705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR2 TK), a key enzyme in angiogenesis.
    Parast CV; Mroczkowski B; Pinko C; Misialek S; Khambatta G; Appelt K
    Biochemistry; 1998 Nov; 37(47):16788-801. PubMed ID: 9843450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2.
    Thévenin AF; Zony CL; Bahnson BJ; Colman RF
    Protein Sci; 2011 May; 20(5):834-48. PubMed ID: 21384452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.