These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17397213)

  • 1. Conformational diversity of the fibrillogenic fusion peptide B18 in different environments from molecular dynamics simulations.
    Knecht V; Möhwald H; Lipowsky R
    J Phys Chem B; 2007 Apr; 111(16):4161-70. PubMed ID: 17397213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-hairpin folding by a model amyloid peptide in solution and at an interface.
    Knecht V
    J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations.
    Daidone I; Simona F; Roccatano D; Broglia RA; Tiana G; Colombo G; Di Nola A
    Proteins; 2004 Oct; 57(1):198-204. PubMed ID: 15326604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes.
    Kouzayha A; Nasir MN; Buchet R; Wattraint O; Sarazin C; Besson F
    J Phys Chem B; 2009 May; 113(19):7012-9. PubMed ID: 19419221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model amyloid peptide B18 monomer and dimer studied by replica exchange molecular dynamics simulations.
    Knecht V
    J Phys Chem B; 2010 Oct; 114(39):12701-7. PubMed ID: 20839866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational behavior of ionic self-complementary peptides.
    Altman M; Lee P; Rich A; Zhang S
    Protein Sci; 2000 Jun; 9(6):1095-105. PubMed ID: 10892803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of peptide conformations by fine-tuning of the environment and/or the primary sequence.
    Li SC; Kim PK; Deber CM
    Biopolymers; 1995 Jun; 35(6):667-75. PubMed ID: 7766831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformations of hydrophobic peptides in trifluoroethanol, water and in solid state: a circular dichroism and Fourier Transform Infrared study.
    Jagannadham MV; Krishnamurthy AS; Husain S; Nagaraj R
    Indian J Biochem Biophys; 1999 Dec; 36(6):422-8. PubMed ID: 10844996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation.
    Wang M; Shan L; Wang J
    Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational manifold of alpha-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations.
    Schweitzer-Stenner R; Gonzales W; Bourne GT; Feng JA; Marshall GR
    J Am Chem Soc; 2007 Oct; 129(43):13095-109. PubMed ID: 17918837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational polymorphism of the PrP106-126 peptide in different environments: a molecular dynamics study.
    Villa A; Mark AE; Saracino GA; Cosentino U; Pitea D; Moro G; Salmona M
    J Phys Chem B; 2006 Jan; 110(3):1423-8. PubMed ID: 16471693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations of primary amphipathic carrier peptides in membrane mimicking environments.
    Chaloin L; Vidal P; Heitz A; Van Mau N; Méry J; Divita G; Heitz F
    Biochemistry; 1997 Sep; 36(37):11179-87. PubMed ID: 9287160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation.
    Hoernke M; Falenski JA; Schwieger C; Koksch B; Brezesinski G
    Langmuir; 2011 Dec; 27(23):14218-31. PubMed ID: 22011020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of peptides with amphiphilic beta-strand structures.
    Osterman DG; Kaiser ET
    J Cell Biochem; 1985; 29(2):57-72. PubMed ID: 4066779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of peptide-guided polymer assembly at the air/water interface.
    Muenter AH; Hentschel J; Börner HG; Brezesinski G
    Langmuir; 2008 Apr; 24(7):3306-16. PubMed ID: 18290677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution conformations of peptides representing the sequence of the toxin pardaxin and analogues in trifluoroethanol-water mixtures: analysis of CD spectra.
    Thennarasu S; Nagaraj R
    Biopolymers; 1997 May; 41(6):635-45. PubMed ID: 9108731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
    Fan H; Wang X; Zhu J; Robillard GT; Mark AE
    Proteins; 2006 Sep; 64(4):863-73. PubMed ID: 16770796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.