These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17397231)

  • 1. Dipole-dipole interactions in nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Murray CB; Titov AV; Kral P
    Nano Lett; 2007 May; 7(5):1213-9. PubMed ID: 17397231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Superlattices of Dipolar and Polarizable Semiconducting Nanoparticles.
    Mazzotti S; Giberti F; Galli G
    Nano Lett; 2019 Jun; 19(6):3912-3917. PubMed ID: 31145624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices.
    Le TH; Noh S; Lee H; Lee J; Kim M; Kim C; Yoon H
    Adv Mater; 2023 Apr; 35(17):e2210749. PubMed ID: 36739656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field.
    Hynninen AP; Dijkstra M
    Phys Rev Lett; 2005 Apr; 94(13):138303. PubMed ID: 15904046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice.
    Zhuang Z; Peng Q; Zhang B; Li Y
    J Am Chem Soc; 2008 Aug; 130(32):10482-3. PubMed ID: 18636712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behavior of dipolar hard and soft spheres.
    Hynninen AP; Dijkstra M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051402. PubMed ID: 16383604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices.
    Bo A; Liu Y; Kuttich B; Kraus T; Widmer-Cooper A; de Jonge N
    Adv Mater; 2022 May; 34(20):e2109093. PubMed ID: 35266222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.
    Jeon YT; Moon JY; Lee GH; Park J; Chang Y
    J Phys Chem B; 2006 Jan; 110(3):1187-91. PubMed ID: 16471662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics.
    Edison JR; Dasgupta T; Dijkstra M
    J Chem Phys; 2016 Aug; 145(5):054902. PubMed ID: 27497577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Close-packed block copolymer micelles induced by temperature quenching.
    Chen L; Lee HS; Lee S
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7218-7223. PubMed ID: 29929964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect.
    Huang JL; Li Z; Duan HH; Cheng ZY; Li YD; Zhu J; Yu R
    J Am Chem Soc; 2017 Jan; 139(2):575-578. PubMed ID: 28045542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large difference in the elastic properties of fcc and hcp hard-sphere crystals.
    Pronk S; Frenkel D
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):255501. PubMed ID: 12857141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.