These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 1739726)
1. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with cytochrome f. Christensen HE; Conrad LS; Ulstrup J Biochim Biophys Acta; 1992 Jan; 1099(1):35-44. PubMed ID: 1739726 [TBL] [Abstract][Full Text] [Related]
2. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with inorganic redox partners [Fe(CN)6]3-/4- and [Co(phen)3]3+/2+. Christensen HE; Ulstrup J; Sykes AG Biochim Biophys Acta; 1990 May; 1039(1):94-102. PubMed ID: 2354205 [TBL] [Abstract][Full Text] [Related]
3. The parsley plastocyanin-turnip cytochrome f complex: a structurally distorted but kinetically functional acidic patch. Crowley PB; Hunter DM; Sato K; McFarlane W; Dennison C Biochem J; 2004 Feb; 378(Pt 1):45-51. PubMed ID: 14585099 [TBL] [Abstract][Full Text] [Related]
4. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo. Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin. Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052 [TBL] [Abstract][Full Text] [Related]
6. Electrostatic effects on electron-transfer kinetics in the cytochrome f-plastocyanin complex. Soriano GM; Cramer WA; Krishtalik LI Biophys J; 1997 Dec; 73(6):3265-76. PubMed ID: 9414237 [TBL] [Abstract][Full Text] [Related]
7. The interaction of nitrotyrosine-83 plastocyanin with cytochromes f and c: pH dependence and the effect of an additional negative charge on plastocyanin. Gross EL; Curtiss A Biochim Biophys Acta; 1991 Jan; 1056(2):166-72. PubMed ID: 1847083 [TBL] [Abstract][Full Text] [Related]
8. Importance of local positive charges on cytochrome f for electron transfer to plastocyanin and potassium ferricyanide. Takenaka K; Takabe T J Biochem; 1984 Dec; 96(6):1813-21. PubMed ID: 6530399 [TBL] [Abstract][Full Text] [Related]
9. Electron transfer reactions of chemically modified plastocyanin with P700 and cytochrome f. Importance of local charges. Takabe T; Ishikawa H; Niwa S; Tanaka Y J Biochem; 1984 Aug; 96(2):385-93. PubMed ID: 6501248 [TBL] [Abstract][Full Text] [Related]
10. Electron transfer reactions between cytochrome f and plastocyanin from Brassica komatsuna. Niwa S; Ishikawa H; Nikai S; Takabe T J Biochem; 1980 Oct; 88(4):1177-83. PubMed ID: 7451412 [TBL] [Abstract][Full Text] [Related]
11. The effect of ethylenediamine chemical modification of plastocyanin on the rate of cytochrome f oxidation and P-700+ reduction. Anderson GP; Sanderson DG; Lee CH; Durell S; Anderson LB; Gross EL Biochim Biophys Acta; 1987 Dec; 894(3):386-98. PubMed ID: 3689779 [TBL] [Abstract][Full Text] [Related]
12. The role of individual lysine residues in the basic patch on turnip cytochrome f for electrostatic interactions with plastocyanin in vitro. Gong XS; Wen JQ; Fisher NE; Young S; Howe CJ; Bendall DS; Gray JC Eur J Biochem; 2000 Jun; 267(12):3461-8. PubMed ID: 10848961 [TBL] [Abstract][Full Text] [Related]
13. The transient complex of poplar plastocyanin with cytochrome f: effects of ionic strength and pH. Lange C; Cornvik T; Díaz-Moreno I; Ubbink M Biochim Biophys Acta; 2005; 1707(2-3):179-88. PubMed ID: 15863096 [TBL] [Abstract][Full Text] [Related]
14. Reactivity of cytochromes c and f with mutant forms of spinach plastocyanin. Modi S; Nordling M; Lundberg LG; Hansson O; Bendall DS Biochim Biophys Acta; 1992 Aug; 1102(1):85-90. PubMed ID: 1324731 [TBL] [Abstract][Full Text] [Related]
15. The surface-exposed tyrosine residue Tyr83 of pea plastocyanin is involved in both binding and electron transfer reactions with cytochrome f. He S; Modi S; Bendall DS; Gray JC EMBO J; 1991 Dec; 10(13):4011-6. PubMed ID: 1756713 [TBL] [Abstract][Full Text] [Related]
16. Role of charges on cytochrome f from the cyanobacterium Phormidium laminosum in its interaction with plastocyanin. Hart SE; Schlarb-Ridley BG; Delon C; Bendall DS; Howe CJ Biochemistry; 2003 May; 42(17):4829-36. PubMed ID: 12718523 [TBL] [Abstract][Full Text] [Related]
17. The role of amino-acid residues in the hydrophobic patch surrounding the haem group of cytochrome f in the interaction with plastocyanin. Gong XS; Wen JQ; Gray JC Eur J Biochem; 2000 Mar; 267(6):1732-42. PubMed ID: 10712605 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of spinach plastocyanin using 4-chloro-3,5-dinitrobenzoic acid: characterization of four singly-modified forms. Gross EL; Curtiss A; Durell SR; White D Biochim Biophys Acta; 1990 Mar; 1016(1):107-14. PubMed ID: 2155655 [TBL] [Abstract][Full Text] [Related]
19. Laser flash-induced kinetic analysis of cytochrome f oxidation by wild-type and mutant plastocyanin from the cyanobacterium Nostoc sp. PCC 7119. Albarrán C; Navarro JA; Molina-Heredia FP; Murdoch Pdel S; De la Rosa MA; Hervás M Biochemistry; 2005 Aug; 44(34):11601-7. PubMed ID: 16114897 [TBL] [Abstract][Full Text] [Related]
20. Redox potential and electrostatic effects in competitive inhibition of dual-path electron transfer reactions of spinach plastocyanin. Christensen HE; Conrad LS; Ulstrup J Arch Biochem Biophys; 1993 Mar; 301(2):385-90. PubMed ID: 8460947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]